

International: 0571-83523119 83523120

Fax: 0571-82875827 E-mail:web@zjbccd.com web@hzwcqp.com

P.O:311214

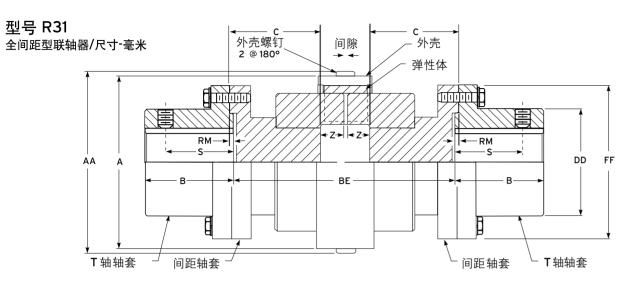
公司简介

浙江宝传传动机械有限公司位于著名的工业中心杭州。 工厂距萧山高速站和沪杭甬高铁10公里,离萧山国际机 场和杭州火车站很近,交通十分便利。这里气候宜人, 风景秀丽,适合创业。

经过近20年的奋斗与拼搏,我厂现有厂房面积20000平方米。公司已发展成为集设计、制造、贸易、服务于一体的大型制造企业。我们的产品包括各种类型的联轴器。广泛应用于汽车、农业机械、工程机械、造纸机械、冶金设备、车桥等行业。

本厂自成立以来,始终坚持"高起点、高投入、高技术装备"的方针。拥有生产设备200余台。有锻压机、数控精车削机、数控专用机、自动推杆炉热处理机、精密磨床、清洗机、装配机等,可完成整条生产线。完善的检测设备,使我们能够领先于其他公司,保证客户的质量和交货期。

经过多年的发展,我厂已通过ISO9001:2008质量管理体系认证。公司严格按照质量管理体系(QMS)的要求,力求达到更卓越的水平。我们本着"高质量,优惠的价格,完善的服务,积极的客户互动"的信念,愿与您在世界各地开展业务。


Company Profile

Zhejiang Baochuan Transmission machinery Co.,Ltd is located in the well known Industrial center Hangzhou. The factory is 10km away from Xiaoshan Highway Station and the Shanghai-Hangzhou-Ningbo high-speed rail, and it is quite near to the Xiaoshan International Airport and Hangzhou Railway Station, so the transportation is very convenient. Owing to the pleasant weather and beautiful scenery, it is good for starting business here.

With nearly 20 years' struggle and hard working, our factory now owns a 20,000 square meters' plant area. We have been grown to a large manufacture integrating design, manufacture, trade and service. Our products include various types of couplings. They are widely used in cars, agricultural machinery, construction machinery, paper making machinery, metallurgical equipment, axle etc.

Our factory has kept holding the guideline of "high starting point, heavy investment and high tech equipment" ever since the establishment. And there are more than 200 pieces equipments in the factory. They are the forging machine, NC fine turning machine, NC special machine, automatic push-rod furnace heat treatment machine, accurate grinding machine, cleaning machine, assembly machines etc that can help finish the whole production line. Thanks to the well equipped testing machines, we can be ahead of others in guaranting customers the quality and delivery time.

Our factory has already got the ISO9001:2008 after years' development. By strictly complying to the QMS(quality management system), we now devote ourselves to more excellent level. With the belief of "high quality, competitive price, perfect service and active customers interaction", we are here ready to make business with you worldwide.

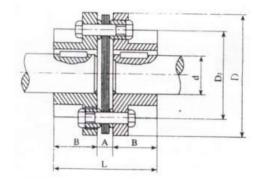
注:轴端间距(BE)=2(C)间距轴套+2(Z)+间隙-2(RM)

											尺	寸-毫	*										
规格	额定扭		最大 孔径	无孔 器重	联轴 量-kg	В	E	A	A	А	A	В	DD	FF	RM	s	Z	72184	外壳虫	累钉●	法兰虬	累钉●	T轴
	與Nm	速rpm	•	最小 BE时 kg	每增加 BE kg/mm	最小	最大	尼龙 外壳	钢外壳	尼龙 外壳	钢外壳		DD		RW	3	2	间隙	规格	内六角	规格	螺钉 数量	轴套
5R	62		35	3.63	0.014	80.9	235	76.5	76.5	80.5	80.4	34.9	52.4	86	1.27	27.4	9.0	2.00	M4	M2.5	M6	4	1020T
10R 20R	130 320		43 56	4.99 9.53	0.015 0.027	88.9 88.9	254 254	90.5 126	90.5 124	94.5 132	94.4	41.3 54.0	59.5 78.6	94	1.27 1.27	31.5 27.4	11.0 15.0	2.00	M4 M6	M2.5 M4	M6 M6	8 8	1030T 1040T
30R	520		67	14.1	0.034	111	254	147	143	153	149	60.3	87.3	126	1.27	40.6	17.0	2.00	M6	M4	M8	8	1050T
40R	1030	3600	85	25.9	0.040	127	311	182	177	190	185	79.4	109.5	153	1.27	46.7	21.0	5.00	м8	М5	M10	12	1070T
50R	2500	3000	95	45.4	0.059	165	311	231	224	239	232	88.9	122.2	178	1.27	49.8	28.0	5.00	М8	М5	M12	12	1080T
60R	4000	2500	110	72.6	0.082	200	311		267		278	101.6	142.9	210	1.27		35.2	5.00	M10	М6	M16	12	1090T
70R	8000	2100	130	102	0.117	224	373	•••	310	•••	321	90.4	171.4	251	1.52		39.7	5.00	M10	М6	M20	12	1100T
70R	8000	2100	150	120	0.117	224	373		310		321	104.1	196.8	276	1.52		39.7	5.00	M10	М6	M20	12	1110T
80R	15000	1800	170	188	0.144	250	424		370		381	119.4	225.4	320	2.39		45.4	6.00	M10	М6	M24	12	1120T
80R	15000	1800	190	230	0.240	256	424	•••	370	•••	381	134.6	238.1	347	2.39		45.4	6.00	M10	М6	M27	12	1130T

- ★ Wrapflex为公制尺寸,公制与英制可能非直接转换。尺寸仅供参考,如有更改恕不另行通知。
- ;5R至50R为标准尼龙外壳,可根据要求提供环氧树脂涂层的碳钢外壳,60R至80R为碳钢外壳。
- 外壳紧定螺钉为ISO 7380-A2标准不锈钢沉头圆头螺钉,每个联轴器配两个外壳紧定螺钉。
- 5R至50R法兰螺钉为ISO10.9级六角头螺钉, 60R为ISO8.8级六角头螺钉。
- ф ЛБЧґїsОКУ±Ч·jКіґЈЖjїКУёґїsЎ5RЦ50ROjПЕєґЅ¶В¶Ў№УЕєґЅ¶В¶µЗїЗІФ427-105Ў

联轴器 规格	T轴轴套	额定扭 距Nm	KW per rpm	许用转速	孔径范围	锥套规格
5R	1020T	62	0.0065	4500	9-26	1108
10R	1030T	130	0.0136	4500	9-26	1108
20R	1040T	315	0.0331	4500	13-35	1310
30R	1050T	485	0.0509	4500	13-42	1615
40R	1070T	994	0.104	3600	20-63	2525
50R	1080T	1276	0.134	3000	20-63	2525
60R	1090T	2710	0.284	2500	24-75	3030
70R	1100T	5062	0.531	2100	31-91	3535
70R	1110T	8000	0.839	2100	37-103	4040
80R	1120T	12428	1.304	1800	50-114	4545
80R	1130T	14226	1.493	1800	61-127	5050

*锥套为UNC细牙螺纹,非BSW


R31全间距型联轴器

标准间距长度

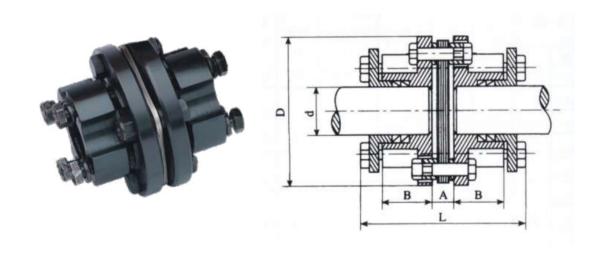
•		N		
ĺ	联轴器规格		BE长度 (轴端间距)	
	avii-taa-v-ii-	100	140	180
	5R 10R 20R	X X X	 X X	
	30R 40R 50R 60R	 	X X 	 X X

DJM型单型膜片弹性联轴器

DJM型单型弹性膜片联轴器的主要尺寸和参数(见图4)

				空伴 注娱力			J 10 0 9	×() [[]			
规	公称扭矩	许用转速	重量	转动惯量	d_{max}	D	L	A	В	许用补	偿量
格	N.m	r/.min	kg	kg.cm ²	mm	mm	mm	mm	mm	角向	轴向mm
00	9.8	20000	0.14	1.74	20	57	44.9	4.9	20	1°	±0.8
01	33	20000	0.6	8	22	68	58.1	6.1	26	1°	±0.8
02	90	20000	1.1	24	32	81	58.6	6.6	26	1°	±1.0
03	173	18000	1.7	48	35	93	66.4	8.4	29	1°	=1.2
04	245	15000	2.5	80	42	104	79.2	11.2	34	1°	±1.4
05	420	13000	4.3	224	50	126	95.7	11.7	42	45′	±1.6
06	772	12000	6.9	440	60	143	107.7	11.7	48	45′	±1.8
07	1270	10000	11.3	1080	72	168	132.8	16.8	58	45′	±2.0
08	2080	10000	16.7	2080	82	194	145	17.0	64	45′	±2.2
09	3328	9000	22.7	3520	95	214	175.6	21.6	77	45′	±2.4
10	4900	8000	35.4	7200	108	246	201.9	23.9	89	45′	±2.6
11	6368	8000	52	12800	118	276	231.2	27.2	102	45′	±2.8
12	8900	6300	57.2	14400	110	276	273.5	17.5	128	30′	±1.8
13	15280	5000	77.3	22200	135	308	339	19	160	30′	±2.0
14	25410	4700	123	40800	155	346	385.5	21.5	182	30′	±2.0
15	37130	4300	156	64800	165	375	420	24	198	30′	±2.0
16	47120	3900	191	100200	180	410	457.5	29.5	214	30′	±2.2
17	57000	3500	245	150000	190	445	479.5	29.5	225	30′	±2.2
18	63186	3500	329	186600	205	470	527	31	248	30'	±2.4
19	82590	3200	394	288000	230	512	588	32	278	30'	±2.4
20	102100	2800	530	448200	255	556	642.5	32.5	305	30'	±2.5
21	126070	2450	619	609600	265	588	670	34	318	30'	±2.7
22	146350	2150	683	831600	275	630	698.5	34.5	332	30'	±2.8
23	173830	2000	791	1070400	290	655	731.5	35.5	348	30′	±3.0

DJM型双型弹性膜片联轴器的主要尺寸和参数(见图5)


规	公称	许用	重量	转动惯量	1	D	_		т.			许用补偿	型 里
格	扭矩 N.m	转速 r/.min	kg	kg.cm ²	d	D	A	В	L	С	角向	轴向mm	径向mm
00	9.8	20000	0.23	3	20	57	4.9	20	100	60	2°	±1.6	0.5
01	33	20000	1.2	8	22	68	6.1	26	141	89	2°	±1.6	0.5
02	90	20000	1.9	24	32	81	6.6	26	141	89	2°	±1.6	0.5
03	173	18000	2.9	48	35	93	8.4	29	160	102	2°	=2.4	0.6
04	245	15000	4.7	80	42	104	11.2	34	195	127	2°	±2.8	0.7
05	420	13000	7.1	224	50	126	11.7	42	211	127	1° 30′	±3.2	0.7
06	772	12000	10.8	440	60	143	11.7	48	223	127	1° 30′	±3.6	0.8
07	1270	10000	16.3	1080	75	168	16.8	58	243	127	1° 30′	±4.0	0.8
08	2080	10000	24.7	2080	82	194	17.0	64	268	140	1° 30′	±4.4	0.9
09	3328	9000	32.5	3520	95	214	21.6	77	306	152	1° 30′	±4.8	0.9
10	4900	8000	50.0	7200	108	246	23.9	89	356	178	1° 30′	±5.2	1.0
11	6368	8000	75.0	12800	118	276	27.2	102	382	178	1° 30′	±5.6	1.2
12	8900	6300	72.2	18000	110	308	17.5	128	409	153	1°	±3.6	1.2
13	15280	5000	12	37000	135	346	19	160	492	172	1°	±4.0	1.2
14	25410	4700	175	6800	155	375	21.5	182	554	190	1°	±4.0	1.2
15	37310	4300	234	108000	165	410	24	198	620	224	1°	±4.0	1.3
16	47120	3900	306	167000	180	445	29.5	214	682	254	1°	±4.4	1.3
17	57000	3500	369	250000	190	470	29.5	225	720	270	1°	±4.4	1.4
18	63186	3500	448	3110000	205	512	31	248	770	274	1°	±4.8	1.5
19	82590	3200	596	480000	230	556	32	278	843	287	1°	±4.8	1.6
20	102100	2800	763	747000	255	588	32.5	305	902	292	1°	±5.2	1.8
21	126070	2450	919	1016000	265	630	34	318	948	312	1°	±5.4	1.8
22	146350	2150	1068	1386000	275	655	34.5	332	1008	344	1°	±5.6	2
23	173830	2000	1235	1784000	290		35.5	348	1052	356	1°	±6.0	2

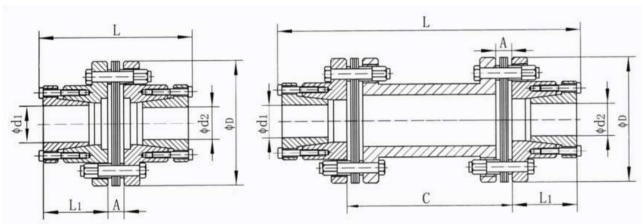
注:①本表中L,尺寸可按用户要求的长度制造。②单边联轴节可能为各种孔型,两边联轴节也可用胀套联结形式。

ZJM型胀紧套单型膜片弹性联轴器

★主要特点:

- ●偏心允许范围大,可灵活应用于各种传动系统.
- ●良好的环境适应性,可高温下运转.
- ●完全消除传动间隙,装拆方便.
- ●传动精度高,可靠性高,寿命长.

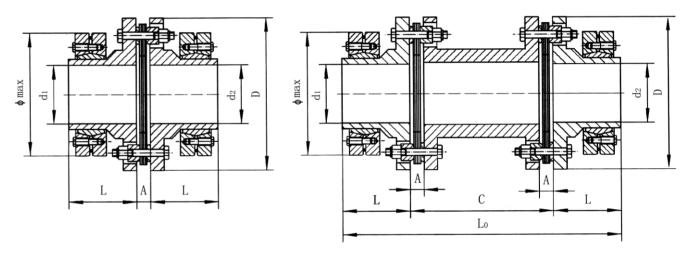
ZJM型单型弹性膜片联轴器主要尺寸和参数


规	孔径d	D	L	A	В	重量	最大转速	公称扭矩	许用衤	偿量
格	mm	m m	mm	mm	mm	kg	r/min	N.m	角向(°)	轴向mm
01	8-22	68	90	6.1	26	0.85	47000	33	1	±0.8
02	10-32	81	95	6.6	26	1.2	39000	90	1	±1.0
03	10-35	93	110	8.4	29	1.7	34000	173	1	=1.2
04	10-42	104	124	11.2	34	2.7	30000	245	1	±1.4
05	15-50	126	152	11.7	42	6.5	25000	420	1	±1.6
06	15-60	143	170	11.7	48	8.9	22000	772	1	±1.8
07	20-70	168	210	16.8	58	15.8	19000	1270	1	±2.5

ZDJM型带锥套单型膜片弹性联轴器 ZSJM型带锥套双型膜片弹性联轴器

★主要特点:

- ●采用日本进口优良的不锈钢片做为弹性材料.
- ●偏心允许范围大,可灵活应用于各种传动系统.
- ●良好的环境适应性,可高温下运转.
- ●完全消除传动间隙,装拆方便.
- ●传动精度高,可靠性高,寿命长.


ZDJM, ZSJM带锥套单(双)型弹性膜片联轴器主要尺寸和参数

型号	公称 扭矩	许用转速	ما ما ما	D	L			٨	许	用补偿	量
坐写	N. m	(rpm)	d1, d2	D	L	L ₁	С	Α	轴向mm	角向(°)	径向mm
ZDJM-01	33	10000	10-30	68	64	25	_	6.1	± 0.45	1	0.04
ZSJM-01	33	10000	10-30	68	147	25	89	6.1	± 0.9	2	0.3
ZDJM-02	90	15000	15-35	82	73	29	_	6.6	± 0.55	1	0.04
ZSJM-02	90	15000	15-35	82	155	29	89	6.6	±1.1	2	0.03
ZDJM-03	173	15000	20-45	93	81	32	_	8.4	± 1.2	1	0.04
ZSJM-03	173	15000	20-45	93	174	32	102	8.4	± 2.4	2	0.3
ZDJM-04	245	15000	25-52	104	96	37	_	11. 2	±1.4	1	0.04
ZSJM-04	245	15000	25-52	104	212	37	127	11. 2	± 2.8	2	0.3
ZDJM-05	420	15000	30-70	126	97	37	_	11.7	± 1.6	1	0.04
ZSJM-05	420	15000	30-70	126	212	37	127	11.7	± 3.2	2	0.3

DJM型锁紧盘式单型弹性膜片联轴器 SJM型锁紧盘式双型弹性膜片联轴器

★结构特点:

- ●具有膜片联轴器及胀套的所有优点.
- ●比用Z1型胀套更简单,成本更低,装折更方便,传递的孔径更大.
- ●也可以将Z7B型胀套更换为Z10型胀套锁紧.
- ●很适合运动不平稳的场合,如加速和制动以及高速传动.
- ●可重复使用,过载时打滑可对机械部件进行保护,但应避免重复打滑.

DIM. SIM锁紧盘式弹性膜片联轴器主要尺寸和参数

型号	公称 扭矩 N.m	许用 转速 (rpm)	d1, d2	D	L	Lo	С	Α	ф та х
01	33	20000	19-31	68	45	179	89	6.1	72
02	90	20000	19-31	81	45	179	89	6.6	72
03	173	18000	19-42	93	56	214	102	8.4	100
04	245	15000	20-48	104	63	253	127	11.2	100
05	420	13000	20-60	126	70	267	127	11.7	115
06	772	12000	30-70	143	75	277	127	11.7	155
07	1270	10000	30-80	168	98	323	127	16.8	170
08	2080	10000	30-85	194	98	336	140	17.0	185
09	3328	9000	35-95	214	98	348	152	21.6	215
10	4900	8000	40-105	246	110	398	178	23.9	230
11	6368	6300	45-115	276	110	398	178	27.2	263
12	8900	6300	50-115	276	110	373	153	17.5	263

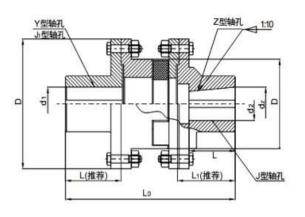
注: Фmax随孔d1.d2的大小而相应变动,具体参见样本Z7B型胀套。

ML型梅花弹性联轴器

梅花形弹性联轴器是由两上带凸爪形状相同的 半联轴器和弹性元件组成,利用梅花形元件置于两半 联轴器凸爪之间,以实现两半轴器的联接。具有补偿 两轴相对偏移、减震、缓冲、径向尺小、结构简单、 不用润滑承载能力较高、维护方便等特点,但更换弹 | 性元件时两半联轴器需沿轴向移动。适用于联接两同 轴线、起动频繁、正反转变化、中速低、中小功率传 动轴系要求工作可靠性高的工作部位,不适用于重载 及轴向尺寸受限制更换弹性元件后两轴线对中困难的

标 MI3型梅花形弹性联轴器

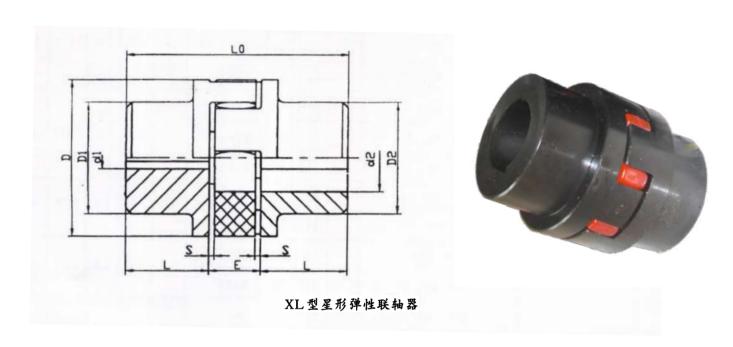
记 主动端: Z型轴孔, B型键槽, d₁=30mm,L=60mm 从动端: Y型轴孔, B型键槽, d₂=25mm,L=62mm **标记方法** 联轴器ML3 ZB30X60 GB/T5272-85


主要尺寸和参数

工3	エノ	ገ ጥ⊦	少文	X							-				
	公和	尔扭矩N	l.m	许用	转速	# J ± 47	轴孔	长度			许	用补偿	量	转动	重量
피	弹性	生体硬质	度HA	rp	m	轴孔直径	Y型	Z.J型	Lo	D	轴向	径向	角向	惯量	- 生里
型号	а	b	С	钢	铁	$d_1 d_2 d_3$	L	L ₁			구따 [-]	1 1 1 1 1	75 I-3	Kg.m ²	Kg
	≥75	≥85	≥94	11시	坎				mm						
						12.14	32	27	80						
ML1	16	25	45	11500	15300	16.18.19	42	30	100	50	1.2	0.5	2.0	0.014	0.66
						20.22.24	52	38	120						
						20.22.24	52	38	127						
ML2	63	100	200	8200	10900	25.28	62	44	147	70	1.5	0.8	2.0	0.075	1.55
						30.32	82	60	187						
						22.24	52	38	128						
ML3	90	140	280	6700	9000	25.28	62	44	148	85	2.0	0.8	2.0	0.178	2.5
						30.32.35.38	82	60	188						
						25.28	62	44	151						
ML4	4 140 250 400 5500 7	7300	30.32.35.38	82	60	191	105	2.5	0.8	2.0	0.412	4.3			
						40.42	112	84	251						
ML5	250	400	710	4600	6100	30.32.35.38	82	60	197	125	3.0	1.0	1.5	0.73	6.2
MILO	250	400	710	4600	6100	40.42.45.48	112	84	157	125	3.0	1.0	1.5	0.73	0.2
ML6	400	630	1120	4000	5300	30*.38*	82	84	203	145	3.0	1.0	1.5	1.85	8.6
MILO	400	030	1120	4000	3300	40*.42*.45.48.50.55	112	107	263	143	3.0	1.0	1.5	1.00	0.0
ML7	710	1120	2240	3400	4500	45*.48*.50.55	112	84	265	170	3.5	1.0	1.5	3.88	14.0
/VIL/	710	1120	2240	0400	4300	60.63.65	142	107	325	170	0.0	1.0	1.0	0.00	14.0
ML8	1120	1800	3550	2900	3800	50*.55*	112	107	272	200	4.0	1.5	1.5	9.22	25.7
MILO	1120	1000	0000		0000	60.63.65.70.71.75	142	132	332					0.22	
ML9	1800	2800	5600	2500	3300	60*.63*.65*.70.71.75	142	107	334	230	4.5	1.5	1.0	18.95	41.0
IVIL	1000	2000			0000	80.85.90.95	172	132	394						
						70*.71*.75*	142	167	344						
ML10	2800	4500	9000	2200	2900	80*.85*.90*.95*	172	132	404	260	5.0	1.5	1.0	39.68	59.0
						100.110	212	167	484						
۸۸۱ ۱۱	4000	6300	12500	1900	2500	85*.86*.90*.95*	172	132	411	300	5.0	1.8	1.0	73.43	87.0
IVILII	12500 1900 12500 1900 2500 19	2300	100.110.120	212	167	491	300	5.0	1.0	1.0	7 3.43	07.0			
						90*.95*	172	132	417						
ML12	7100	11200	20000	1600	2100	110*.110*.120*125*	212	167	497	360	5.0	1.8	1.0	178.45	140
						130	252	202	577						

MLS型双法兰型梅花弹性联轴器

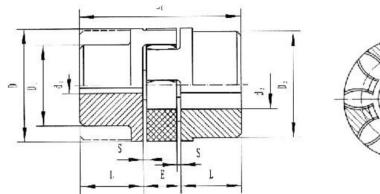
MLS3型梅花形弹性联轴器 MT3a弹性件硬度为shA80

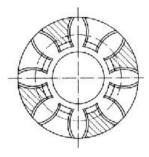

| MT3d弹性性健良/JSnA60 | 主动端: Z型轴孔, C型键槽, d₂=30mm,L=60mm (不含沉孔长度) | 从动端: Y型轴孔, B型键槽, d₂=25mm,L=62mm | **标记方法** | MLS3联轴器 ZC30X60 | B25X62 | Mt3a GB/T5272-2002

工女八													
	公称扭矩			 軸孔直径	轴孔		L_1L_2					转动	重量
型号	弹性体码	更度HA	许用转速	$d_1 d_2 d_3$	Y型	Z.J.J _, 型		L_0	D	D₁	弹性件	惯量	
至亏			rpm	$\mathbf{u}_1 \ \mathbf{u}_2 \ \mathbf{u}_3$	L	L ₁	推荐	Ŭ		'	型号	Kg.m²	Kg
					m	m							
				12.14	32	27							
MLS1	25	45	8500	16.18.19	42	30	35	98	50	90	MT1-a	0.0013	1.33
111201				20.22.24	52	38	33	70	30	/ / /	74111-5	0.0010	1.00
				25	62	44							
				20.22.24	52	38							
MLS2	100	200	6900	25.28	62	44	40	117	70	110	MT2 ^{-a}	0.0034	2.33
				30.32	82	60							
				22.24	52	38							
MLS3	140	280	6200	25.28	62	44	45	130	85	125	MT3 ^{-a}	0.0064	3.38
				30.32.35.38	82	60							
				40	112	84							
				25.28	62	44					AAT 4-0		
MLS4	350	400	5000	30.32.35.38	82	60	50	150	105	150	MT4 ^{-a}	0.0175	6.07
				40.42.45	112	84							
AALCE	400	710	4100	30.32.35.38	82	60		1/7	105	10.5	AATE -a	0.0444	10.47
MLS5	400	710	4100	40.42.45.48	112	84	55	167	125	185	MT5-a	0.0444	10.47
AALC/	/ / / /	1100	0700	35*.38*	82	60	/ / /	10.5	145	005	MT6-a	0.0739	14.22
MLS6	630	1120	3700	40*.42*.45.48.50.55	112	84	60	185	145	205	/V/10-b	0.0737	14.22
AALC7	1100	0040	0100	45*.48*.50.55.56	112	84	70	000	170	0.40	MT7 ^{-a}	0.1493	21.16
MLS7	1120	2240	3100	60.63.65	142	107	70	209	170	240	/V\ / -b		
				50*.55*.56*	112	84							
MLS8	1800	3550	2800	60.63.65.70.71.75	142	107	80	240	200	270	MT8 ^{-a}	30.70	0.2767
				80	172	132							
				60*.63*.65*.70.71.75	142	107							
MLS9	2800	5600	2500	80.85.90.95	172	132	90	268	230	305	MT9-a	44.55	0.5262
				100	212	167							
				70*.71*.75*	142	107							
MLS10	4500	9000	2200	80*.85*.90.95	172	132	100	308	260	350	MT10-a	70.72	1.1362
				100.110.120	212	167							
				80*.85*.90*.95*	172	132							
MLS11	6300	12500	1900	100.110.120.125	212	167	115	345	300	400	MT11-a	99.54	1.9998
				130	252	202							
				90*.95*	172	132							
MLS12	11200	20000	1600	100.110.120.125	212	167	125	373	360	460	MT12-a	137.53	3.6719
				130	252	202							
			100*.110*.120*.125*	212	167								
MLS13	12500	25000	15000	130.140.150	252	202	135	383	400	500	MT13 ^{-a}	165.25	5.1581
				160	302	242							

XL型星形弹性联轴器

- ●该联轴器以工程塑料弹性元件、缓冲、减振、耐磨、拆装方便、工作温度-35~+80℃。
- 可与西德ROTEX联轴器互换。
- 弹性体由凸形爪块限制,可避免由于冲击产生的内部变形 及离心力产生的外部变形。凸爪大的凹面,使渐开线齿上的表面 压力很小,齿上即使承受过载,齿仍不会磨损或变形。

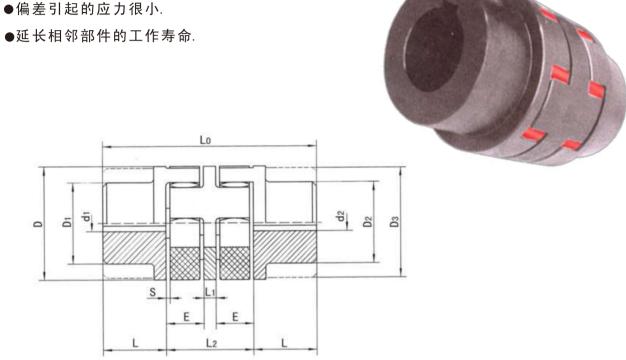

XL 型星形弹性联轴器主要尺寸和参数


型	公称扭矩	许用转速	轴孔直径	轴孔长度	L_0	D	ФD1ФD2	Е	S	转动惯量	重量
号	N.m	rpm	相1L且任 d1,d2	相北区及 Lmm	mm	mm	mm	mm	mm	枚奶顶里 Kg·m²	王 里 Kg
XL0	15	19000	6-16	18	5 0	3 0	30	13	1.5	0.00005	0.10
_											
XL1	20	19000	6-19	25	66	40	32	16	2	0.00008	0.30
XL2	70	14000	8 - 24	30	78	55	40	18	2	0.0002	0.61
XL3	190	11800	10-28	35	90	65	48	20	2.5	0.0007	1.00
X L 4	380	9500	12-38	45	114	80	66	24	3	0.002	2.08
XL5	530	8000	14-42	50	126	95	75	26	3	0.004	3.21
XL6	620	7100	15-48	56	140	105	8.5	28	3.5	0.006	4.41
XL7	820	6300	20-55	65	160	120	98	30	4	0.012	6.64
XL8	1250	5600	22-65	75	185	135	115	35	4.5	0.025	10.13
XL9	1950	4750	30-75	85	210	160	135	40	5	0.054	16.03
XL10	4800	3750	40-90	100	245	200	160	45	5.5	0.139	27.50
XL11	6800	3350	50-100	110	270	225	180	50	6	0.245	38.50
XL12	8000	3000	60-110	120	295	255	200	50	6	0.435	54.0
XL13	10000	2650	60-125	140	340	290	230	60	7	0.85	81.8
XL14	14500	2380	60-140	155	375	320	255	65	7.5	1.4	109.7
XL15	20000	2000	80-160	175	425	370	290	75	9	2.72	162.7
X L 1 6	23500	1800	85-180	195	475	420	325	85	10.5	4.95	230.8

XLD型扩大轴孔星形弹性联轴器

★结构特点:

- ●本联轴器与ZT-A型相似,但是适合于孔径更大的安装场合。 标记方法同ZT-A型。
- ●轴套使用钢件,特别适合于体重载荷的传动单元,如 升降机、轧钢机、建筑机械。
- ●设计紧凑,转动惯量小。
- ●弹性体, 硬度为92shA。

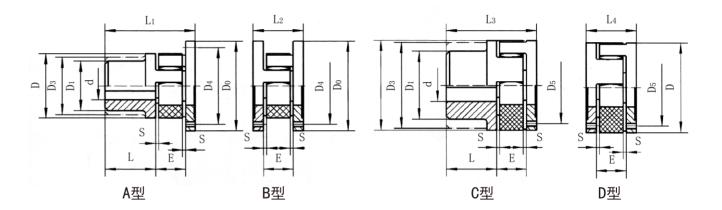


XLD型扩大轴孔星形弹性联轴器基本参数和主要尺寸

型号	公称扭矩	许用转速	轴孔直径 d ₁ , d ₂	轴孔 长度	Lo	D	D ₁ (D ₂)	D 2	Е	S	转动惯量	重量
号	N. m	rpm	mm	L mm	mm	mm	mm	mm	mm	mm	kg.m ²	kg
XLD1	34	19000	6-25	25	66	40	32	40	16	2	0.00008	0.328
XLD2	120	14000	8-35	30	78	55	40	55	18	2	0.0003	0.68
XLD3	320	11800	10-40	35	90	65	48	65	20	2.5	0.0007	1.16
XLD4	650	9500	12-48	45	114	80	66	78	24	3	0.002	2.27
XLD5	900	8000	14-55	50	126	95	75	94	26	3	0.005	3.57
XLD6	1050	7100	15-60	56	140	105	85	104	28	3.5	0.008	4.80
XLD7	1250	6300	20-70	65	160	120	98	118	30	4	0.016	7.87
XLD8	1280	5600	22-75	75	185	135	115	134	35	4.5	0.031	10.89
XLD9	2930	4750	30-90	85	210	160	135	158	40	5	0.068	17.73
XLD10	7200	3750	40-100	100	245	200	160	180	45	5.5	0.159	29.60
XLD11	9900	3350	50-110	110	270	225	180	200	50	6	0.277	43.0
XLD12	12000	3000	60-125	120	295	255	200	230	55	6.5	0.51	58.6
XLD13	15000	2650	60-145	140	340	290	230	265	60	7	1.0	88.4
XLD14	22000	2360	60-165	155	375	320	256	300	65	7.5	1.7	120.8
XLD15	30000	2000	80-190	175	425	370	290	345	75	9	3.35	179.1
XLD16	35000	1800	85-220	195	475	420	325	400	85	10.5	6.37	261.0

XL-S型双弹性体星形弹性联轴器

- ★结构特点:
- ●双部件双节式结构能补偿很大的安装偏差.
- ●阻尼振动,降低噪音.
- ●偏差引起的应力很小.



XL-S型双弹性体星形弹性联轴器基本参数和主要尺寸

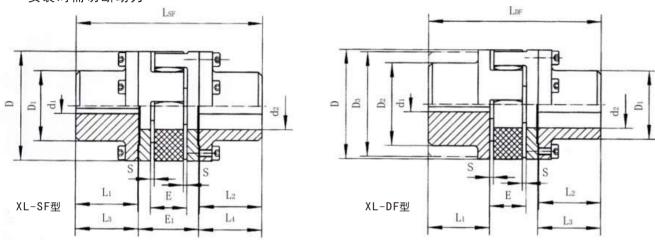
型号	公称 扭矩	许用 转速	轴孔直径 d1, d2	轴孔 长度 L	Lo	L ₁	L 2	D	D ₁ (D ₂)	Dз	Е	S	许月	目补付	尝量
7	N. m	rpm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	径向	角向	轴向
0 1	17	19000	6-25	25	92	10	42	40	32	40	16	2	0.65		1.2
02	60	14000	8-35	30	112	16	52	55	40	55	18	2	0.89		1.4
03	160	11800	10-40	35	128	18	58	65	48	65	20	2.5	1		1.5
04	325	9500	12-48	45	158	20	68	80	66	78	24	3	1.15		1.8
05	450	8000	14-55	50	174	22	74	95	75	94	26	3	1.26	1.5°	2
06	525	7100	15-60	56	192	24	80	105	85	104	28	3.5	1.36	1.5	2.1
07	685	6300	20-70	65	218	28	88	120	98	118	30	4	1.52		2.1
08	940	5600	22-75	75	252	32	102	135	115	134	35	4.5	1.75		2.6
09	1950	4750	30-90	85	286	36	116	160	135	158	40	5	2		3
10	3600	3750	40-100	100	330	40	130	200	160	180	45	5.5	2.5		3.4

XL-F型带法兰星形弹性联轴器

- ★结构特点:
- ●适用于重型机械的法兰联结.
- ●A型和C型适用于法兰和轴的联结.
- ●双法兰结构B型和D型可以不移动两端设备进行径向安装,可快速更换弹性体.
- ●可以根据客户的特殊法兰定做.

XL-F型带法兰星形弹性联轴器基本参数和主要尺寸

	/\ \begin{align*} // \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	*\T\+\\\	##ZI	加フレウ	D	D	D	D	Г		T	T	D	D	- V
型号	公称扭矩	许用转速	轴孔	轴孔长度	D	D_0	D_1	D ₃	E -	S	L	L ₂	D ₄	D ₅	联接
	(N · m)	(rpm)	直径(mm)	L(mm)			(m	m)			(L_3)	(L_4)	(m	m)	螺栓
XL-F1	60	14000	8~35	30	55	80	40	55	18	2	56	34	65	45	8-M5
XL-F2	160	11800	10~40	35	65	100	48	65	20	2.5	65	40	80	54	8-M6
XL-F3	325	9500	12~48	45	80	115	66	78	24	3	79	44	95	66	8-M8
XL-F4	450	8000	14~55	50	95	140	75	94	26	3	88	50	115	80	12-M8
XL-F5	525	7100	15~60	56	105	150	85	104	28	3.5	96	52	125	90	12-M8
XL-F6	685	6300	20~70	65	120	175	98	118	30	4	111	62	145	102	8-M10
XL-F7	940	5600	22~75	75	135	190	115	134	35	4.5	126	67	160	116	12-M10
XL-F8	1920	4750	30~90	85	160	215	135	158	40	5	144	78	185	136	15-M12
XL-F9	3600	3750	40~100	100	200	260	160	180	45	5.5	165	85	225	172	15-M16
XL-F10	4950	3350	50~110	110	225	285	180	200	50	6	185	100	250	195	15-M16
XL-F11	7200	3000	60~125	120	255	330	200	230	55	6.5	201	107	290	218	15-M20
XL-F12	10000	2650	60~145	140	290	370	230	265	60	7	230	120	325	252	15-M20
XL-F13	12800	2360	60~165	155	320	410	256	300	65	7.5	254	133	360	282	15-M20
XL-F14	19000	2000	80~190	175	370	460	290	345	75	9	288	151	410	325	15-M24
XL-F15	28000	1800	85~220	195	420	520	325	400	85	10.5	320	165	465	375	18-M24


XL-SF 型双法兰星形弹性联轴器 XL-DF 型单法兰星形弹性联轴器

适用于重型机械的法兰联接

拆下法兰就可以径向安装, 拆装方便

对于SF型,不必移动主动端和从动端设备进行弹性体更换

安装时需切断动力

主要尺寸和参数

	公称扭矩	许用转速	轴孔直径	D	D ₁	D ₂	D₃	Е	E ₁	S	L ₁	L ₂	L _{SF}	L _{DF}
	(N.m)	(rpm)	(mm)			(m	m)				(L_3)	(L ₄)	(m	m)
01	60	14000	8-24	55	36	40	55	18	33	2	30	30.5	94	86
02	160	11800	8-28	65	42	48	65	20	39	2.5	35	35.5	110	100
03	325	9500	10-38	80	52	66	78	24	43	3	45	45.5	134	124
04	450	8000	10-42	95	62	75	94	26	48	3	50	51.0	150	138
05	525	7100	10-48	105	70	85	104	28	50	3.5	56	57.0	164	152
06	685	6300	15-55	120	80	98	118	30	60	4	65	66.0	192	176
07	940	5600	15-65	135	94	115	134	35	65	4.5	75	76.0	217	201
08	1920	4750	20-75	160	108	135	158	40	75	5	85	86.5	248	229
09	3600	3750	30-90	200	142	160	180	45	82	5.5	100	101.5	28	265
10	4950	3350	30-115	225	158	180	200	50	97	6	110	111.5	320	295
11	7200	3000	40-125	255	178	200	230	55	103	6.5	120	122.0	347	321
12	10000	2650	40-145	290	206	230	265	60	116	7	140	142.0	400	370
13	128000	2360	60-160	320	235	256	300	65	128	7.5	155	157.5	443	409
14	19000	2000	60-180	370	270	290	345	75	146	9	175	177.5	501	463
15	28000	1800	85-220	420	315	325	400	85	159	10.5	195	198.0	555	515

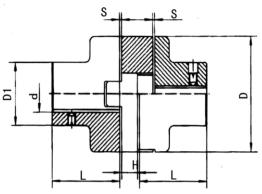
SL型十字滑块联轴器

|SL型十字滑块联轴器是利用中间滑块在其两侧半联轴 器大端面的相应径向槽内滑动,以实现两半联轴器的联接,

许有不大的角度位移和轴向位移,由于滑块偏心运动产生离

该联轴器传动的公称扭矩120-63000N.m,转速250-70r/min.

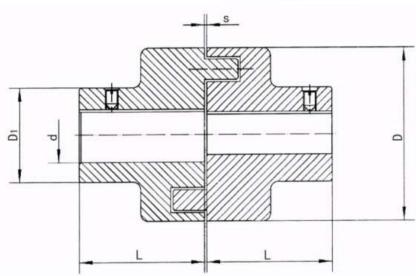
标记示例


SL型联轴器

主动端: Y型轴孔, A型键槽, d,=36mm,L,=90mm 从动端: Y型轴孔, A型键槽, d₂=40mm,L=90mm

标记方法

SL型联轴器 SL100-YA36X90/YA40X90



工女)())	TH 979	Q.										
	公称转矩	许用转速	轴孔直径		_				径向	角向	轴向	转动惯量	重量
型号	N.m	rpm	d	D	D ₁	L	Н	S	∆y mm	∆a (°)	∆x mm	kg.m²	kg
SL70	120	250	15~18	70	32	42	14		0.6		1.2	0.002	1.5
SL90	250	250	20~30	90	45	52	14		0.7		1.4	0.008	2.6
SL110	500	250	36~40	110	60	70	19		1.4		1.5	0.026	5.5
SL130	800	250	45~50	130	80	90	19	0.5	1.8		1.8	0.07	10
SL150	1250	250	55~60	150	95	112	19		2.2		2	0.14	15.5
SL170	2000	250	65~70	170	105	125	24		2.6		2.1	0.25	2.4
SL190	3200	250	75~80	190	110	140	29		3		2.2	0.5	31.5
SL210	5000	250	85~90	210	130	160	33		3.4	0.5°	2.6	0.9	45
SL240	8000	250	95~100	240	140	180	33		3.8		3	1.6	59.5
SL260	9000	250	100~110	260	160	190	33		4		3.4	2	76
SL280	10000	100	110~120	280	170	200	33		4.4		3.8	3	94.3
SL300	13000	100	120~130	300	180	210	43		4.8		4.2	4.3	111
SL320	16000	100	130~140	320	190	220	43	1	5.2		4.6	5.7	129
SL340	20000	100	150	340	210	250	48		6		5	8.4	162
SL360	32000	100	160	360	240	280	48		6.4		5.7	19.2	258
SL400	38700	80	170	400	260	300	48		6.6		6.4	26.1	305
SL460	63000	70	180	460	300	350	58		8		7.2	62.9	560

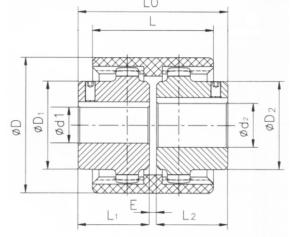
AT 型橡胶弹性联轴器

- ★结构特点:
- ●轴间对准容易,安装简便.
- ●缓冲件四边围绕,耐冲击.
- ●缓冲件活动量大,振动小,高速,无噪音.
- ●无需加油,免保养.

AT 型橡胶弹性联轴器基本参数和主要尺寸

型号	公称 扭矩 N. m	许用 转速 rpm	轴孔直径 d	L	D	D 1	S
AT-50	5	3000	19	25	50	33	2
AT-67	13	3000	28	30	67	46	2.5
AT-82	28	3000	32	35	82	53	3
AT-97	45	3000	42	45	97	69	3
AT-112	70	3000	48	50	112	79	3.5
AT-128	140	3000	55	56	128	90	3.5
AT-148	280	3000	65	65	148	107	3.5
AT-168	500	3000	75	75	168	124	3.5
AT-194	840	1500	85	85	194	140	3.5
AT-214	1000	1500	95	100	214	157	4

NL型内齿形弹性联轴器

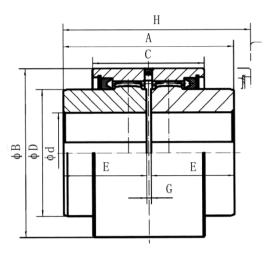

内齿形弹性联轴是目前国内的最新产品,在国外已经广泛地被采用、适用于轴间及的挠性传动,允许较大的轴向位径向位移和角位移,且具有结构简单、维修方便、拆装容易、噪声低、传动功效损失小、使 用寿命长等优点、倍受用户欢迎。

半联轴器采用精密铸造,铸铁HT20-40、铸钢ZG35II,轴孔和键槽采用拉制成型,内齿形联轴器弹性体外套可根据用户使用要求选用各种硬度合成橡胶脂橡胶;增强铸型尼龙弹性体等材料。

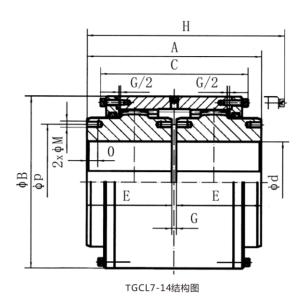
结

构

图



主要性能及尺寸


工女	11土 形	及八	,ì											
1	2	3			4						5		惯性	
莊山	公称	许用		主要凡	7寸 (mm)					最力	大尺寸化	扁差	扭矩	重量
型号	扭矩	转速	轴孔直径	轴孔 长度	LO	D	D ₁	Е	L	轴向	径向	角度	(KgCm²)	(Kg)
	(N.M)	(r/min)	d_1 , d_2	L ₁ , L ₂		2	D ₂		_	(mm)	(mm)	a		
NII 1	40	6000	6, 8, 10	16, 20	37, 45	40	26	4	34	34	± 0.3	1°	0.05	0.175
NL 1	10	0000	12, 14	25, 32	55,69	10	20		94	01	± 0.0		0.25	0.175
NL 2	100	6000	10, 12, 14, 24	25, 32 42, 52	57, 71	52	36	4	40	40	± 0.4	1°	0.92	0.316
			16, 18, 20, 22	42, 52	91, 111				10				0.02	
NL 3	160	6000	20, 22, 24 25, 28	52,62	113 133	66	44	4	46	46	± 0.4	1°	3.10	9.739
			28, 30, 32											
NL4	250	6000	35, 38	62,82	129 169	83	58	4	48	48	± 0.4	1°	8.69	1.22
	315	6000	32, 35, 38	82, 112	169	93	68	4	50	50	± 0.4	2°	14.00	1 40
NL5	313	0000	40, 42	02, 112	229	90	00	4	30	30	I U. 4		14. 28	1.49
N.I.C	400	5000	40, 42, 45	112	230	100	68	4	52	52	± 0.4	2°	18. 34	1.81
NL6			48										16. 34	1.01
NL7	630	5000	45, 48, 50	112	229	115	80	4	60	60	± 0.6	2°	56.5	3.05
NLI			55										00.0	0.00
NL8	1250	3600	48, 50, 55	112, 142	229 289	140	96	4	72	72	± 0.6	2°	98. 55	5.18
NLO			60, 63, 65										30.00	0.10
NL9	2000	2000	60, 63, 65 70, 71, 75, 80	142, 172	295 351	175	124	6	93	93	± 0.7	2°	370. 5	11.5
TAL 3			70, 71, 75, 80	142, 172	292, 352									
N L1 0	3150	1800	85, 90, 95, 100	212	432	220	157	8	110	110	± 0.7	2°	1156.8	23.8

TGCL型钢套鼓形齿式联轴器

结构轻巧,转动惯量小,能补偿较大的轴向偏移 结构特点 适用于联接水平两同轴线传动轴系,中小载荷高速场合 鼓形齿式联轴器允许正反方向回转,可将任一个侧外齿 轴套作为主动输入端.

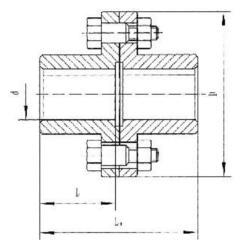
主要尺寸和参数

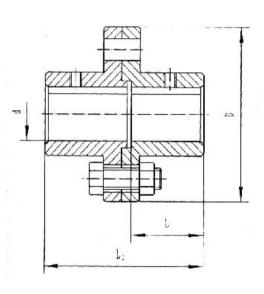
			13																		
		轴径d		公称扭矩	极限扭矩	转	速	角向	径向	转动	重量				5	小形.	尼刀				
型号	$d\Phi_{\scriptscriptstyle min}$	$d\Phi_{\text{max}}$		Tn	Тр			外偿	外偿	惯量		Α	В	С	D	Е	G	Н	М	Р	Q
	m	im		1	٧m	rp	m	(°)	mm	Kgm	kg						mm				
TGCL1	0	35		550	1100	5500	7750	2x0.75	0.1	0.002	2	80	84	50	50.9	38.5	3	96			
TGCL2	0	42		1100	2200	5100	7200	2x0.75	0.14	0.004	3.4	95	95	65	60.4	46	3	117			
TGCL3	22	63		1970	3940	4400	6200	2x0.75	0.14	0.010	6	110	120	68	82.6	53.5	3	124			
TGCL4	25	75		3240	6480	4000	5600	2x0.75	0.19	0.022	9.1	120	140	80	100	57	6	146			
TGCL5	38	90		5600	11200	3600	5100	2x0.75	0.22	0.052	15	140	168	95	121	67	6	175			
TGCL6	38	110		8500	17000	3400	4800	2x0.75	0.23	0.122	29	222	190	102	143	108	6	223			
TGCL7	0	112	110	16000	32000	3350	4700	2x0.75	0.7	0.219	55.7	335	186	174	151	165	5	313			
TGCL8	55	132	130	22000	44000	3100	4350	2x0.75	0.9	0.0440	74.4	346	216	206	178	170	6	368			
TGCL9	65	158	155	32000	64000	2800	4000	2x0.75	1	0.956	116	386	254	227	213	190	6	415			
TGCL10	80	175	175	45000	90000	2700	3800	2x0.75	1.1	1.55	150	408	282	254	235	200	8	468	M12	205	18
TGCL11	90	198	195	62000	124000	2550	3600	2x0.75	1.2	2.71	206	448	317	276	263	220	8	516	M16	226	24
TGCL12	100	217	215	84000	168000	2450	3450	2x0.75	1.4	4.27	273	508	346	319	286	250	8	602	M16	250	24
TGCL13	120	244	240	115000	232000	2300	3300	2x0.75	1.5	6.71	357	568	376	346	316	280	8	657	M16	276	24
TGCL14	150	290	275	174000	348000	2150	3050	2x0.75	1.7	14.73	584	710	436	383	372	350	10	743	M20	330	30

YL、YLD型凸缘联轴器 (GB/T5843-1986)

本联轴器是一种应用最广泛的固定式刚性联轴器,结构简单,工作性能可靠, 传递转矩大,装拆方便,轴孔键槽形式按GB/T3852-1997规定。YL型利用铰 制孔螺栓对中,装拆不沿轴向移动。YLD型凹凸榫对中,加工方便,但拆装

要沿轴向移动,轴孔形式也可以是锥孔。


YLD8凸缘联轴器


主动端: Y型轴孔, A型键槽, d=45mm,L=84mm 从动端: Y型轴孔, A型键槽, d=45mm,L=84mm

标记方法 YLD8 45X84 GB/T5843-1986

标记方法 YLD8 45X84 GB/T5843-1986 YL5凸缘联轴器 主动端: J₁型轴孔, A型键槽, d=30mm,L=60mm | 从动端: J.型轴孔, B型键槽, d=28mm,L=44mm

标记方法 YL5 J₁A30X60 J₁B28X44

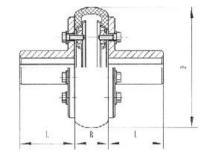
主更尺寸和参数

土安ノ	C 7 小	少数	L									
型号	公称扭矩		转速 om	轴孔	直径 d		孔 长 度 L	D		L o	重量	转动惯量
	N • m	铁	钢	铁	钢	Y型	J ₁ 型	m m	Y型	J ₁ 型	k g	kg·m²
				10	10	25	2 2		5 4	48		
YL1	10	8100	13000	1 2 1 4	1 2 1 4	3 2	2 7	7 1	68	58	0.94	0.0018
YLD1				16 18 19	16 18 19	42	3 0	11	88	6 4	0.94	0.0018
				20	20	52	38		108	8 0		
				1 2 1 4	1 2 1 4	3 2	2 7		68	58		
Y L 2 Y L D 2	1 6	7200	12000	16 18 19	16 18 19	42	3 0	8 0	88	6 4	1.50	0.0035
				20	20	52	38		108	8 0		

YL、YLD型**凸缘联轴器的主要尺寸和基本参数**(GB/T5843-1986)

			1.	1				1/\ TI	4 A	дн	, <u> </u>	文/ 、) 4H 4		Ι								1 (· <i>/</i>
型号	公称扭矩	许用	转速	細扎.	l		L长度 L	D		0	重量	转动惯量	型 号	公称 扭矩	许用	转速	細扎」 d			L长度 L	D	I	, 0	重量	转动惯
			om.	l	m	_			_	mm					r	pm	L.,		m				mm		
	N· m	铁	钢	铁	钢	Y型	J ₁ 型	mm	Y型	J ₁ 型	kg	kg•m²		N•m	铁	钢	铁	钢	Y型	J ₁ 型	mm	Y型	J ₁ 型	kg	kg•m²
				14	14	32	27		68	58							50	50							
				16	16												55	55	112	84		229	173		
				18	18	42	30		88	64							56	56							
YL3	25	6400	10000	19	19			90			1 99	0.0060	YL11	1000	3200	5300	60	60			180			17.97	0.20
YLD3	10	0100	10000	20	20						1.00	0.0000	YLD11				63	63							
				22	22	52	38		108	80							65	65	142	107		289	219		
					24													70							
					25	62	44		128	92				\vdash			60	60							
				18	18	42	30		88	64							\vdash	63							
				19	19	42	30		00	04							63								
YL4				20	20								YL12			4500	65	65	142	107		289	219	30.62	0.443
YLD4	40	5700	9500	22	22	52	38	100	108	80	2.47	0.0093	YL12 YLD12	1600	2900	4700	70	70			200				
1221				24	24												71	71							
				25	25	62	44		128	92							75	75							
					28	02	44		120	92				_				80	172	132		349	269	29. 52	0.46
				22	22	52	38		108	80							70	70							
				24	24	92	30		100	00							71	71	142	107		289	219		
YL5	69	E E O (9000	25	25	62	44	105	1 2 0	92	3. 19	0.013	YL13	2500	2600	4300	75	75			220			35. 58	0.646
YLD5	0.5	3300	9000	28	28	02	44	105	120	92	3. 19	0.015	YLD13		2000	1000	80	80			220			00.00	0.01
				30	30	82	60		160	124]						85	85	172	132		349	269		
					32	04	00		100	124							_	90							
				24	24	52	38		108	80							80	80							
				25	25	62	44		128	92							85	85	179	132		350	270		
YL6	100	5200	8000	28	28	-		110	l		3 99	0.017	YL14	4000	2300	4800	90	90	112	102	250	000		57 13	1.35
YLD6	100	0200		30	30			110			0.00	0.011	YLD14	1000	2000	1000	95	95			200			01.10	1.00
				32	32	82	60		168	124							100	100	919	167		120	340		
					35												-	110	212	107		450	340		
				28	28	62	44		128	92							<u> </u>	90	170	100		0.50	070		
				30	30												-1	95	172	132		350	270		
YL7	160	4800	7600	32	32	82	60	120	168	124	5 66	0.029	YL15				100	100			000				0.045
YLD7	100	1000		35	35	02		120		121	0.00	0.023	YLD15	6300	2000	3400	110				290			89. 59	2.845
				38	38												120	_							
						112	82		228	172							-	_							
				32	32												-1	100	212	167		430	340		
				35	35	82	60		169	125							\vdash	110							
YL8	250	4300	7000	38	38			130			7. 29	0.043	YL16				$\overline{}$								
YLD8				40	40								YL16 YLD16	10000	1800	3000	125				340			119.57	5. 271
				42		112	82		229	173							130	130							
					45												-	140	252	202		510	410		
				38	38	82	60		169	125				\vdash			-								
				40	40												\vdash	120	212	167		430	340		
YL9	400	4100	6800	42	42			140			9.53	0.064	YL17				190	120							
YLD9				45	45	112	84		229	173			YL17 YLD17	14000	1600	2600	140			202	380	E 1 0	410	171.71	9.139
				48	48								12211				150			202		510	410		
					50	Ш			_		<u> </u>						-		-	242		610	490		
				45	45									\vdash			\vdash		JU2	444		010	490		
				48	48				990	173								140	252	202		510	410		
YL10 YLD10	630	3600	6000	50		112	84	160	229	113	12.46	0.112	YL18		1,100	0000		150	_		400	\vdash		000 0-	15 00
I ALDIO				55	55						12.46 0.112 YLD	YL18 YLD18	20000	1400	2300	_	160	0.00	00	420	1		263.85	17.83	
					56	Ш											-		302	242		610	490		
					60	142	107		289	219								180							

UL型轮胎式联轴器(GB/T5844-2002)


橡胶元件(轮胎体)与金属压板硫化粘接在一起,装配时用螺栓直接与

柔性、阻尼大、补偿量大

结构简单,装配容易。更换轮胎体时无需轴向移动联轴节 缺点: 随扭转达角的增加, 在主从动轴上产生相当大的轴向力

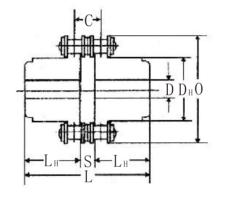
UL型轮胎式联轴器的标记按GB/T3852-1997的规定

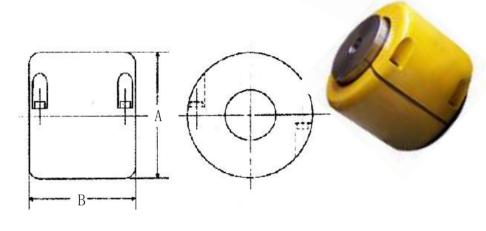
UL 型轮胎式联轴器的主要尺寸和特性参数(GB/T5844-2002)

	I														
型		瞬时最		转速	轴孔〕	直径d	轴孔	长度L	D	В	重量	转动		用补偿	
	扭矩	大扭矩	rŗ	om		mm						惯量	轴向	径向	角向
号	N∙m	N∙m	钢	铁	钢	铁	J、J 1 型	Y 型	m	m	kg	kg• m²	mn	1	
					11	11	22	25							
UL1	10	31.5	5000	3500	12、14	12, 14	27	32	80	20	0.7	0.0003			
					16、18	16	30	42					1.0	1.0	
					14	14	27	32							
UL2	25	80	5000	3000	16、18、19	16、18、19	30	42	100	26	1.2	0.0008			
					20, 22	20	38	52							
					18, 19	18, 19	30	42							
UL3	63	180	4500	3000	20, 22, 24	20, 22	38	52	120	32	1.8	0.0022			
					25		44	62					1.6	2.0	1°
					20, 22, 24	20, 22, 24	38	52							
UL4	100	315	4300	3000	25, 28	25	44	62	140	38	3	0.004			
					30		60	82							
					24	24	38	52							
UL5	160	500	4000	3000	25、28	25, 28	44	62	160	45	4.6	0.0084			
					30、32、35	30	60	82					1.6	2.0	
					28	28	44	62					1.0	•	
UL6	250	710	3600	2500	30、32、35、38	30、32、35	60	82	180	50	7.1	0.0164			
					40		84	112							

UL 型轮胎式联轴器的主要尺寸和特性参数(GB/T5844-2002)

型		瞬时最	许用	转速	轴孔〕	直径d	轴孔	长度L	D	В	重量	转动	许	用补偿	量
	扭矩	大扭矩	rp	om		mm			ע	D	里里	惯量	轴向	径向	角向
号	N∙m	N∙m	钢	铁	钢	铁	J、J 1 型	Y 型	m	m	kg	kg• m²	mn	1	
UL7	315	900	3200	2500	32、35、38	32, 35, 38	60	82	200	56	10 0	0.029	2.0	2.5	1°
OLI	310	300	3200	2300	40、42、45、48	40、42	84	112	200	30	10.5	0.023	2.0	2.0	1
UL8	400	1250	3000	2000	38	38	60	82	220	63	13	0.0448			
010	100	1200		2000	40、42、45、48、50	40, 42, 45	84	112	220	- 00	10	0.0110			
					42、45、48	42, 45, 48	84	112					2.5	3.0	
UL9	630	1800	2800	2000	50、55、56	50、55			250	71	20	0.0898			
					60		107	142							-
					45*、48*、50	45*、48*、50	84	112							
UL10	800	2240	2400	1600	55、56	55、56			280	80	30.6	0.1596			
					60、63、65、70	60、63、65	107	142					3.0	3.6	
	1000	0500	0100	1000	50*, 55*, 56*	50*55*、56*	84	112	000		0.0	0.700			
UL11	1000	2500	2100	1600	60、63、65、70	60, 63, 65	107	142	320	90	39.0	0.2792			
					71、75	FF. FC.	0.4	110							-
					55*、56*	55*、56*	84	112							
UL12	1600	4000	2000	1600	60*、63*、65*		107	142	360	100	59	0.5356	3.6	4.0	
					70、71、75 80、85	70、71、75 80	132	172							
					63*、65*、70*			112							-
UL13	2500	6300	1800	1600	71*, 75*	71*, 75*	107	142	400	110	81	0.896		4.5	
CLIO	2000	0000	1000	1000	80、85、90、95	80, 85, 90, 95	132	172	100	110		0.000		1.0	1° 30
					75*	75*	107						4.0		-
					80*、85*、90*	80*、85*、90*									
UL14	4000	10000	1600	1400	95、	95*	132	172	480	130	145	2. 2616		5.0	
					100, 110	100, 110	167	212							
					85*、90*、95*	90*、95*	132	172							1
UL15	6300	14000	1200	1120	100*、110*	100*、110*	107	010	560	150	222	4.6456		5.6	
					120*、125*	120*、125*	167	212							
					100*、110*	100*、110*	167	910]
UL16	10000	20000	1000	1000	120*、125*	120*、125*	101	212	630	180	302	8.0924		6.0	
					130、140	130、140	202	252							
					120*、125*		167	212					5.0		
 	16000	31500	900	850	130*、140*	130*、140*	202	252	750	210	561	20. 0176		6.7	
0.011	10000	91000	300	000	150*	150*	202	202	100	210	001	20. 0110		0.1	
					160*	160*	242	302							
					140*150*		202	252							
UL18	25000	59000	800	750	160*、170*	160*、170*	242	302	900	250	818	43.053		8.0	
					180*	180*									


注: 1、轴孔直径有*号者为结构允许 制成J型轴孔 (GB/T3852-1997) 《联轴器轴孔和键槽型式及尺寸》 2、联轴器重量和转动惯量是各型号中最大值的计算近似值。


KC链条联轴器

链条联轴器是利用公用的链条,同时与两个齿数相同的并列链轮啮合,不同结构型式的链条联轴器主要区别是采用不同的链条,常见的有双排滚子链联轴器、单排滚子链联轴器、齿形链联轴器、尼龙链联轴器等。

结 双排滚子链联轴器性能优于其他结构型式的联轴器,为国内外广泛采用,我国亦已制订为国家标准。链条联轴器具有结构简单(四个件组成)、装拆方便、拆卸时不用移动被联接的两轴、尺寸紧凑、质量轻、有一定补偿能力、对安装精度要求不高、工作可靠、寿命较长、成本较低等优点。

京 可用于纺织、农机、起重运输、工程、矿山、轻工、化工等机械的轴系传动,适用于高温、潮湿和多尘工况环境,不适用高速、有剧烈冲击载荷和传递轴向力的场合,链条联轴器应在良好的润滑并有防护罩的条件下工作。

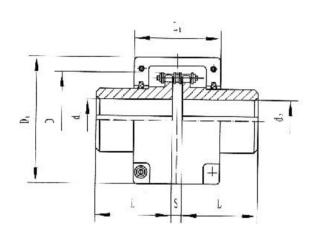
						联	轴器							外壳	
型号	节距		孔	径	0	L	DH	L _H	S	С	推荐马力	轴径 范围	重量 (Kg)	A	В
KC-3012	9.525	12	13. 5	16	45	65	27.2	29.5	6	10.1			0.31	69	63
KC-4012 KC-4014 KC-4016	12.70	12 12 13.5	14 14 16	22 28 32	62 69 77	79.4 79.4 87.4	36 45 51.5	36 36 40	7.4	14.4	1HP 2-3HP	11-22	0.73 1.12 1.50	77 84 92	72 75 72
KC-5014 KC-5016 KC-5018	15.875	14.5 14.5 16	17 18 18	35 40 45	86 96 106	99.7 99.7 99.7	56 64 73.5	45 45 45	9.7	18.1	5HP 2-3HP	15-38 19-45	2.15 2.75 3.60	101 110 122	85 87 85
KC-6018 KC-6020 KC-6022	19.05	20 20 20	22 24 28	56 60 71	127 139 151	123.5 123.5 123.5	102.5	56 56 56	11.5	22.8	15-20HP 30HP	22-55 25-75	6.55 8.38 10.4	147 158 168	105 105 117
KC-8018 KC-8020 KC-8022	25.40	20 20 20	32 36 40	80 90 100	169 185 202	141.2 145.2 157.2	125	63 65 71	15.2	29.3	40HP 50HP	30-78 35-95	13.2 16.2 21.8	190 210 226	129 137 137
KC-10020	31.75	25	45	110	233	178.8	162	80	18.8	35.8	75HP	38-110	32.4	281	153
KC-12018 KC-12022	38.1	35 35	50 56	125 140	256 304	202.7 222.7	I .	90 100	22.7	45.4			43.2 69.1	307 367	181 181

GL型滚子链联轴器 (GB/T6069-2002)

名 构 特 点 双排滚子链采用GB1243.1-83《传动用短节矩精密滚子链》规定的链条 轴孔键槽形式及尺寸符合GB/T3852-1997规定 使用罩壳的结构及尺寸,根据需要选定 标记符合GB/T3852-1997 结构简单,拆装方便,反转时有空行程,不宜用于冲击载荷很大的逆向传动 双排滚子链采用GB1243.1-83《传动用短节矩精密滚子链》规定的链条

有罩壳时,型号后加"F"

GL3型滚子链联轴器,有罩壳


主动端: J₁型轴孔, A型键槽, d₁=25mm,L=44mm

标记方法 GL3F J, 25X44 GB/T6069-2002

GL7型滚子链联轴器

主动端:J₁型轴孔,B型键槽,d₁=45mm,L=84mm

GL型滚子链联轴器基本参数和主要尺寸(GB/T6069-2002)

型	公称	许用		轴孔 直径	轴孔七	ć度mm	链	链条 节距	齿数	D	S	D _k	L_{k}	重	转动	许	用补偿	量
	扭矩	rı			Y型	J ₁ 型		b h her		Ъ	5	(最大)	(最大)	量	惯量	径向	转向	角向
号	N • m	不装 罩壳	安装	mm	I		号	mm	Z		m	1 m		kg	kg•m	mm	mm	
		早冗	早冗	16	42						"	I						
				18	42													
GL1	40	1400	4500	18	42	_	06B	9. 525	14	51.06	4.9	70	70	0.40	0.00010	0. 19	1.4	1°
				20	52	38												
				19	42													
AT 0	00	1050	4500	20	52	38												۱.,
GL2	63	1250	4500	22	52	38	06B	9. 525	16	57.08	4.9	75	75	0.70	0.00020	0. 19	1.4	1°
				24	52	38												
				20	52	38												
GL3	100	1000	4000	22	52	38	08B	12.7	14	68, 88	6.7	85	80	1.1	0.00038	0. 25	1.9	1°
GL.	100	1000	4000	24	52	38	ООД	12. (14	00.00	0. 1	00	00	1. 1	0.00036	0.20	1. 9	1
				25	62	44												
				24	52													
				25	62	44												
GL4	160	1000	4000	28	62	44	08B	12. 7	16	76. 91	6. 7	95	88	1.8	0.00086	0. 25	1.9	1°
				30	82	60												
				32	82	60												
				28 30	62 82	<u> </u>												
				32	82	60												
GL5	250	800	3150	35	82	60	10A	15.875	16	94. 46	9. 2	112	100	3. 2	0.0025	0.32	2.3	1°
				38	82	60												
				40	112	84												

GL型滚子链联轴器基本参数和主要尺寸(GB/T6069-2002)

Trum 直径 Trum 直径 Trum 直径 Trum 五次 Trum			.,·		l		1	1							I	I		
接換 大変 大変 大変 大変 大変 大変 大変 大	型	公称			轴孔 直径	轴孔长度1	m 链	链条 节距	齿数	D	S	l				许	用补偿	量
1		扭矩	^		I	Y型 J ₁ 型					S	(最大)	(最大)			径向	转向	角向
GL GL GR GR GR GR GR GR	号	N • m	小装	安装置点		L	一号	mm	Z		m	m		kg	kg•m [*]	mm	mm	
GL6 400 630 2500 38 82 60 40 112 84 48			,-) [,-,-	32	82 60												
GL6 400 630 2500 40 112 84 104 15.875 20 116.57 9.2 140 105 5.0 0.0068 0.32 2.3 1					35	82 60	4											
GL7 400 630 250	CI 6	400	630	2500	40	112 84	∃ 104	15 975	20	116 57	0.2	140	105	5.0	0 0058	0.32	2 2	1°
Carrel C	GLO	400	030	2500			_ 10A	15.675	20	110. 57	J. L	140	100	5.0	0.0000	0. 32	2. 3	
GL7 400 630 2500					48	112 84												
GL7 400 630 2500 48 112 84 124 19.05 18 127.78 10.9 150 122 7.4 0.012 0.38 2.8 1 1						112 84												
GL7 400 630 2500 48 112 84 12A 19.05 18 127.78 10.9 150 122 7.4 0.012 0.38 2.8 1 GL8 1000 500 2240 55 112 84 16A 25.40 16 154.33 14.3 180 135 11.1 0.025 0.50 3.8 1 GL9 1600 500 2000 65 142 107 70					42	112 84	-											
GL10 S00	01.7	400	C00	0500	45	112 84		10.05	10	107 70	10.0	150	100	7.4	0.010	0.00	0.0	۱. ا
GL8 1000 500 2240 55 112 84 16A 25.40 16 154.33 14.3 180 135 11.1 0.025 0.50 3.8 1 1 60 154.33 14.3 180 135 11.1 0.025 0.50 3.8 1 60 142 107 70 142 107 70 142 107 75 142 107 100 100 100 100 100 100 100 100 100	GL/	400	030	2500	50	112 84	- 12A	19.05	10	121.18	10. 9	150	122	7.4	0.012	0.38	2.0	1
GL8 1000 500 2240					55	112 84	,											
GL8 1000 500 2240 $\frac{48}{50} = \frac{112}{112} = \frac{84}{84} \frac{50}{60} = \frac{112}{112} = \frac{84}{84} \frac{50}{60} = \frac{112}{112} = \frac{84}{84} \frac{16A}{60} = \frac{125}{112} = \frac{16A}{84} \frac{16A}{60} = \frac{125}{112} = \frac{16A}{112} = $																		
GL8 1000 500 2240 55 112 84 16A 25.40 16 154.33 14.3 180 135 11.1 0.025 0.50 3.8 1					48	112 84	7											
GL9 1600 500 2000 65 142 107	GL8	1000	500	2240	50 55	112 84 112 84	16A	25. 40	16	154. 33	14.3	180	135	11. 1	0.025	0. 50	3.8	1°
GL9 1600 500 2000					60	142 10	7											_
GL9 1600 500 2000					70													
GL10 2500 315 1600 2000 60 142 107 75 142 107 70 142 107 75 142 107 75 142 107 75 142 107 75 142 107 75 142 107 75 142 107 75 142 107 75 142 107 75 142 107 75 142 107 75 142 107 75 142 107 75 142 107 880 172 132 85 172 132 85 172 132 90 172 132 90 172 132 90 172 132 90 172 132 90 172 132 90 172 132 90 172 132 90 172 132 90 172 132 90 172 132 90 172 132 90 172 132 90 172 132 90 172 132 95 172 132 90 172 132 90 172 132 95 172 132 90 172 132 95 172 132 95 172 132 95 172 132 90 172 132 95 172 132 90 172 132 90 172 132 95 172 132 90 172 132 100 212 167					50	112 84												
GL10 2500 315 1600 200 1500 250 1500 250 1250 1					60	112 84	7											
GL10 2500 315 1600 75 142 107 70 142 107 70 142 107 75 142 107 75 142 107 75 142 107 75 142 107 75 142 107 75 142 107 75 142 107 75 142 107 75 142 107 75 142 107 75 142 107 75 142 107 80 172 132 85 172 132 90 172 132 90 172 132 90 172 132 90 172 132 90 172 132 95 172 132 95 172 132 95 172 132 90 172 132 90 172 132 90 172 132 90 172 132 95 172 132 90 172 132 100 172 132 100 172 132 100 172 132 100 172 132 100 172 132 100 172 132 100 172 132 100 172 132 100 172 132 100 172 132 100 172 132 100 172 132 100 172 132 100 172 132 100 172 132 100 172 132 100 172 1	GL9	1600	500	2000	65	142 10	7 16A	25. 40	20	186. 50	14.3	215	145	20.0	0.061	0. 50	3.8	1°
GL10 2500 315 1600					70													
GL10 2500 315 1600					80	172 133	2											
GL10 2500 315 1600 70 142 107 75 142 107 80 172 132 85 172 132 90					60													
GL11 4000 250 1500 80 172 132 90 172 132 90 172 132 90 172 132 90 172 132 90 172 132 95 172 132 100 212 167 120 212 167 120 212 167 110 212 167 120 212 167 110 212 167 110 212 167 110 212 167 110 212 167 110 212 167 110 212 167 110 212 167 110 212 167 120 212 167 110 21					70	142 10	7											
GL11 4000 250 1500 85 172 132 90 172 132 167 110 212 167 110 212 167 120	GL10	2500	315	1600	75	142 10	20A	31. 75	18	213. 02	17.8	245	165	26. 1	0.079	0.63	4.7	1°
GL11 4000 250 1500					85	172 133	2											
GL11 4000 250 1500 80 172 132 90 172 132 94A 38.1 16 231.49 21.5 270 195 39.2 0.188 0.76 5.7 1 GL12 6300 250 1250 95 172 132 90 172 132 90 172 132 100 212 167 11					90													
GL12 6300 250 1250 90 172 132 187 180 212 167 180 212 167 110 212 110 212 167 110 212 167					80	172 133	2											
GL12 6300 250 1250 95 172 132 90 172 132 167 110 212 110 212 110 212 110 212 110 212 110 212 110 212 1	GL11	4000	250	1500	85	172 133	24A	38. 1	16	231. 49	21.5	270	195	39. 2	0. 188	0. 76	5. 7	1°
GL12 6300 250 1250 90 172 132 90 172 132 90 172 132 167 110 212 167 120 212 167 120 212 167 110 212 167 167 170 170 170 170 170 170 170 170 170 17					95	172 133	2											
GL12 6300 250 1250 95 172 132 187 180 212 167 110 212 167 120 212 167 110 212 110 212 167 110 212 110					100	212 16	7		_									
GL12 6300 250 1250 95 172 132 187 28A 44.45 16 270.08 24.9 310 205 59.4 0.380 0.88 6.6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					90	l 172 13	2											
110 212 167 120 212 167 100 212 167 110 212 167 120 212 167	GL12	6300	250	1250	95	172 133	28A	44. 45	16	270.08	24.9	310	205	59. 4	0. 380	0.88	6.6	1°
100 212 167 110 212 167 120 212 167 120 212 167					110	212 16	7											
110 212 167 120 212 167 120 212 167	\vdash					212 16	7		-									
[7] 10000 200 1120 120 212 167 224 50.0 10 240.00 22.0 220 220 20.0 20.0 1.0 7.6 7.6					110	212 16	7											
	GL13	10000	200	1120	120	212 16	2004	50.8	18	340. 80	28.6	380	230	86. 5	0.860	1.0	7.6	1°
130 252 202					130	252 203	2											
140 252 202 120 212 167					140	252 203	2											
					125	212 16	7											
0714 16000 200 1000 130 252 202 204 50.9 20 405 20 206 450 250 150.9 2.06 1.0 7.6 1	GL14	16000	200	1000	130	252 202	2004	50.8	22	405. 22	28.6	450	250	150.8	2.06	1.0	7.6	1°
130 252 202					150	252 203	2											
					160	302 24	2											
140 252 202 150 252 202					150	252 203	2											
C115 25000 200 000 160 302 242 404 62 5 20 466 25 25 6 510 205 224 4 4 27 1 27 0 5 1	G115	25000	200	900	160	302 242	2 404	63. 5	20	466. 25	35. 6	510	285	234. 4	4. 37	1. 27	9.5	1°
G115 25000 200 900 170 302 242 40A 65.5 20 466.25 55.6 510 265 254.4 4.57 1.27 9.5 1						302 24	<u> </u>				-			•				
注			<u> </u>	<u> </u>	190	352 283	2	<u> </u>	Ļ									

注:表中联轴器重量,转动惯量是近似值。

HL 型弹性柱销联轴器 HLL 型带制动轮弹性柱销联轴器(GB/T5014-1985)

结构特

点

标记示例

弹性元件使用尼龙,其强度和耐磨性较高,且适用于有腐蚀的环境。 钢制制动轮外圆表面经淬火处理 半联轴器孔和键槽形式及尺寸,标记方法均按GB/T3852-1997 《联轴器轴孔和联接型式及尺寸》的规定,两个半联轴器轴孔形式可以任意组合

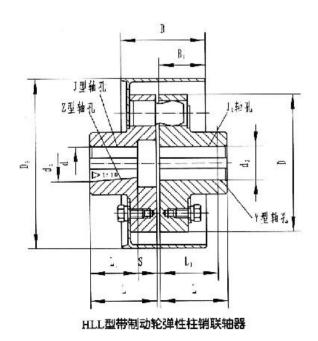
标记说明

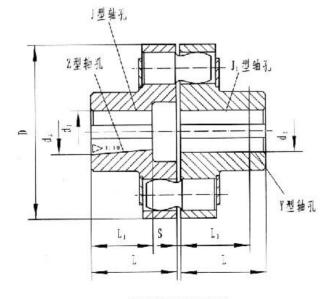
使用温度-20~+70℃

对于Z型,J型带沉孔的轴孔长度是指轴孔的配合长度(不含沉孔),即图中LI尺寸

HL6 弹性柱销联轴器

主动端: Y型轴孔,A型键槽, d_1 =65mm,L=142mm 从动端: Y型轴孔,B型键槽, d_2 =75mm,L=44mm


标记方法 HL6^{JB60X107}_{YB75X84} GB/T5014-1985


HLL5带制动轮 弹性柱销联轴器

主动端: J型轴孔, B型键槽, d₁=60mm,L=107mm 从动端: Y型轴孔, B型键槽, d₂=75mm,L=84mm

标记方法 HLL5 $\frac{\text{JB60X107}}{\text{YB75X84}}$ GB/T5014-1985

HL型弹性柱销联轴器

HL 型弹性柱销联轴器基本参数和主要尺寸 (GB/T5014-1985)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						下					ענ.					
	型		l				_			D	S					重量
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	号							_					JT 153			kg
Hill 1000 10					12, 14	12, 14	32	27	32							
H1 2	HL1	160	71	00	16, 18, 19	16, 18, 19	42	30	42	90	2.5	±2.5	0.15	≤0°30′	0.0064	2
Hile					20, 22, 24	20, 22	52	38	52							
Hi					20, 22, 24	20, 22, 24	52	38	52							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	HL2	315	56	000	25, 28	25, 28	62	44	62	120	2.5	±1	0.15	≤0°30′	0.253	5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					30, 32, 35	30, 32	82	60	82							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	111.0	600			30, 32, 35, 38	30, 32, 35, 38	82	60	82	1.00	0 5	1.1	0 15	_0°001	0.0	0
$\begin{array}{c} \text{H. L. I } & 1250 & 4000 & 800 \\ \text{H. L. I } & 2000 & 3550 & 2500 \\ \text{H. L. I } & 2000 & 3550 & 2500 \\ \end{array}{c} & \begin{array}{c} 60, 63 & \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	HL3	030	50	100	40, 42, 45, 48	40, 42	112	84	112	100	2.5	±1	0.15	0 30°	0.6	8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	111 4	1050	1000	2000	40, 42, 45, 48, 50, 55, 56	40、42、45、48、50、55、56	112	84	112	105	9	L1 E	0 15	_0°00 <i>1</i>	2 4	0.0
$\begin{array}{c} \text{H. B. } & 2000 & 3550 & 2500 \\ \text{H. B. } & 2000 & 3550 & 2500 \\ \text{H. B. } & 3150 & 2800 & 2100 \\ \text{H. B. } & 3150 & 2800 & 2100 \\ \text{H. B. } & 3150 & 2800 & 2100 \\ \text{H. B. } & 3150 & 2800 & 2100 \\ \text{H. B. } & 3150 & 2800 & 2100 \\ \text{H. B. } & 3150 & 2800 & 2100 \\ \text{H. B. } & 3150 & 2800 & 2100 \\ \text{H. B. } & 3150 & 2800 & 2100 \\ \text{H. B. } & 3150 & 2800 & 2100 \\ \text{H. B. } & 3150 & 2800 & 2100 \\ \text{H. B. } & 3150 & 2800 & 2100 \\ \text{H. B. } & 3150 & 2800 & 2100 \\ \text{H. B. } & 3150 & 2800 & 2100 \\ \text{H. B. } & 3150 & 2800 & 2100 \\ \text{H. B. } & 3150 & 2800 & 2100 \\ \text{H. B. } & 3150 & 2800 & 2100 \\ \text{H. B. } & 3150 & 2100 \\ \text{H. B. } & 315$	HL4	1250	4000	2800	60, 63		142	107	142	195) 	T1.0	0.15	≈0.30°	3.4	22
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	111 E	2000	2550	2500	50、55、56	50、55、56	142	107	142	220	9	<u>1</u>	0 15	<0°201	5 1	20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	пгэ	2000	3330	2500	60, 63, 65, 70, 71, 75	60, 63, 65, 70	142	107	142	220	3	<u> </u>	0.15	≈ 0 30	0.4	30
HLT 1000 120 160 120 160 110 110 110 121 167 121 167 122 122 167 122 122 167 122 122 167 122	шк	2150	2800	9100			142	107	142	280	1	±9	0.20	<0°00'	15.6	5.2
$\begin{array}{l} \text{HLR} \\ \text{HLR} \\ \text{HLR} \\ \text{HLR} \\ \text{HLR} \\ \text{HCR} \\ HCR$	IILU	3130	2000	2100			142	132	172	200	4		0.20	≪ 0 30	15.0	55
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					70、71、75	70、71、75	142	107	142							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	HL7	6300	2240	1700	80、85、90、95	80、85、90、95	172	132	172	320	4	±2	0.20	≤0°30′	41.1	98
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					100、110	110	212	167	212							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ШΩ	10000	2120	1600	80、85、90、95	80、85、90、95	212	167	212	360	5	+9	0.20	< 0°3 0'	56 5	110
HL10 25000 1500	IILO	10000	2120	1000	100、110、120、125	100、110	212	167	212	300	Ű		0.20	<0 J0	30.3	113
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	HI 9	16000	1800	1250	100、110、120、125	100、110、120、125	212	167	212	410	5	+9	0 20	<0°30′	133 3	197
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	IILU	10000	1000	1200	130、140	130	252	202	252	110	Ů		0.20	20 00	100.0	101
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					110、120、125	110、120、125	212	167	212							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	HL10	25000	1560	1120	130、140、150	130、140、150	252	202	252	480	6	±2.5	0.25	≤0°30′	273.2	322
HL11 31500 1320 1000 $\begin{array}{ c c c c c c c c c c c c c c c c c c c$					160、170、180	160	302	242	302							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						130、140、150	252	202	252							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	HL11	31500	1320	1000	160、170、180	160、170、180	302	242	302	540	6	±2.5	0.25	≤0°30′	555.7	520
HL12 63000 1250 950 $\begin{array}{ c c c c c c c c c c c c c c c c c c c$					190、200、220	190	352	282	352							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					160、170、180	160、170、180	302	242	302							
HL13 100000 1120 850 $190, 200, 220$ $190, 200, 220$ 352 282 352 $240, 250, 260$ $240, 250, 260$ 410 330 $ 710$ $8 \pm 3 0.25 \leqslant 0°30' 1700 105' 280, 300 470 380 470 380 800 8 \pm 3 0.25 \leqslant 0°30' 4318 1950$	HL12	63000	1250	950	190, 200, 220	190、200、220	352	282	352	630	7	±2.5	0.25	≤0°30′	902	714
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					240、250、260		410	330	-							
280, 300					190、200、220	190、200、220	352	282	352							
HL14 160000 850 630 240, 250, 260 240, 250, 260 410 330 - 800 8 ±3 0. 25 0°30′ 4318 1950	HL13	100000	1120	850	240、250、260	240、250、260	410	330	_	710	8	±3	0.25	≤0°30′	1700	1057
HL14 $\begin{vmatrix} 160000 \\ 850 \end{vmatrix}$ $\begin{vmatrix} 630 \\ 280 \\ 300 \\ 320 \end{vmatrix}$ $\begin{vmatrix} 300 \\ 300 \end{vmatrix}$ $\begin{vmatrix} 470 \\ 380 \\ - \end{vmatrix}$ $\begin{vmatrix} 800 \\ 8 \end{vmatrix}$ $\begin{vmatrix} 8 \\ \pm 3 \end{vmatrix}$ $\begin{vmatrix} 0.25 \\ 80\%0 \end{vmatrix}$ $\begin{vmatrix} 4318 \\ 1950 \end{vmatrix}$					280、300		470	380	_							
2007 0007 020 000					240、250、260	240、250、260	410	330	_							
340	HL14	160000	850	630	280、300、320	300	470	380	_	800	8	±3	0.25	≤0°30′	4318	1956
					340		550	450	-							

注: 1、表中"钢"是指钢制半联轴器,"铁"是指铸铁制半联轴器。2、轴孔形式及长度L、 L_1 可根据需要选取。3、联轴器转动惯量、重量是近似值。

HLL 型带制动轮弹性柱销联轴器基本参数和主要尺寸 (GB/T5014-1985)

型	公称	许用	# 기 로 A	轴	孔长度	mm	D ₀	D	В	B ₁	S	许月	目补偿	星里	转动	重量
 号	扭矩	转速	轴孔直径mm	Y型		、Z型	ν ₀	D	Б	Ъ1	J	轴向	径向	角向	惯量。	
	N∙m	rpm	$d_1, d_2, d_2,$	L	L ₁	L		·	1	mm					kg m²	kg
			20、22、24	52	38	52										
HLL1	315	5600	25、28	62	44	62	200	120	85	42	2.5	±1	0.15	<0°30′	2.18	11
			30、32、35	82	60	82										
HLL2	630	5000	30、32、35、38	82	60	82	200	160	85	47	2.5	±1	0.15	≤0°30′	2.45	14
			40、42、45、48	112	84	112										
HLL3	630	1900	30、32、35、38	82	60	82	315	160	132	66	2.5	<u>±1</u>	0.15	<0°30′	13.08	25
			40、42、45、48	112	84	112										
HLL4	1250	1900	40、42、45、48、50、56	112	84	112	315	195	132	66	3	±1.5	0.15	<0°30′	16.6	40
			60、63	142	107	142										
HLL5	1250	1400	40、42、45、48、50、55、56	112	84	112	400	195	168	84	3	±1.5	0.15	 ≤0°30′	49.2	59
			60、63	142	107	142										
HLL6	2000	1400	50、55、56	112	84	112	400	220	168	84	3	±1.5	0.15	 ≤0°30′	57.6	69
			60、63、65、70、71、75	142	107	142	100		100		Ŭ		0.10		0	
HLL7	2000	1120	50、55、56	112	84	112	500	220	210	105	3	+1 5	0 15	<0°30′	127.4	91
	2000	1120	60、63、65、70、71、75	142	107	142		220	210	100			0.10	X0 00	121.1	01
HLL8	3150	1400	60、63、65、70、71、75	142	107	142	400	280	168	84	4	±2	0.2	<0°30′	161.7	88
пььо	0100	1100	80、85	172	132	172	100	200	100	01	1		0.2	~0 00	101.1	00
HLL9	3150	1120	60、63、65、70、71、75	142	107	142	500	280	210	105	4	+2	0.2	<0°30'	129. 2	113
HLLL	3130	1120	80、85	172	132	172	300	200	210	100	4	12	0.2	<0.00	123.2	110
			70、71、75	142	107	142										
HLL10	6300	1120	80、85、90、95	172	132	172	500	320	210	105	4	±2	0.2	≤0°30′	156	156
			100, 110	212	167	212										
			70、71、75	142	107	142										
HLL11	6300	960	80、85、90、95	172	132	172	630	320	265	132	4	±2	0.2	≤0°30′	314	187
			100、110	212	167	212										
111.1.10	10000	0.00	80、85、90、95	172	132	172	600	0.00	0.05	100	_	1.0	0.0	Z00001	0.00	200
HLL12	10000	960	100、110、120、125	212	167	212	630	360	265	132	5	±2	0.2	<0°30′	328	326
111 1 10	10000	0.00	100、110、120、125	212	167	212	710	410	000	1.40	_	1.0		<00001	710	0.07
HLL13	16000	800	130、140	252	202	252	710	410	298	149	5	±2	0.2	≤0°30′	713	337
			110、120、125	212	167	212										
HLL14	25000	800	130、140、150	252	202	252	710	480	298	149	6	±2.5	0.25	≤0°30′	849	458
			160、170、180	302	242	302	1									
			110、120、125	212	167	212										
HLL15	25000	710	130、140、150	252	202	252	800	480	335	168	6	±2.5	0.25	<0°30′	1231	504
			160、170、180	302	242	302	1									

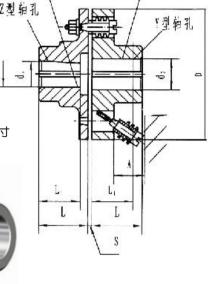
注:1、半联轴器采用锻钢或铸钢件。2、轴孔形式及长度L与L1,可根据需要选取。3、联轴器转动惯量、重量是近似值。4、制动轮可选用整体式。

TL型弹性套柱销联轴器(GB/T4323-2002替代GB4323-84)

由于弹性套与半联轴器凸缘上圆孔间的间隙以及弹性套的变形 联轴器具有一定的补偿两相对偏移和减震性能

心记示例

工作温度-20~+70℃


轴孔,键槽的型式和尺寸,标记方法符合GB/3852-1997 【联轴器轴孔和联接型式及尺寸】的规定。

标记说明

对于Z型,J型带沉孔的轴孔长度是指轴孔的配合长度(不含沉孔)即图中L1尺寸TL5型弹性柱销联轴器

主动端: Z型轴孔, C型键槽, d_z=30mm,L₁=60mm 从动端: Y型轴孔, B型键槽, d=28mm,L=62mm

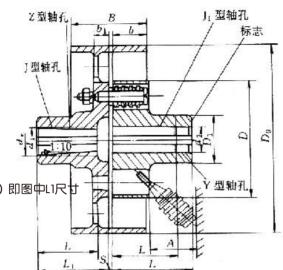
标记方法 TL5 ZC30X60 YB28X62 GB/T4323-2002

J. 型轴孔

J型轴孔

TL型弹性套柱销联轴器基本参数和主要尺寸(GB/T4323-2002)

11	土 十	IT 🛱	<u>IТ 1Н .</u>	以 抽 岙 荃 4	少奴作工	· 女 / \	() (UD/ 1	T		, ,	200	<u> </u>		
#il	公称	许用	转速	轴孔直	ī 径mm	轴	孔长度	mm	D	A	S	许用	补偿量	重量	转动 惯量
型号	扭矩	rp	m	d ₁ , d ₂	d_z	Y型	J、,	J、Z型		11		径向	角向	kg	
	N. m	铁	钢	铁	钢	L	L ₁	L		mm		mm) II I. 4	кg	kg.m²
				9	9	20	14	-							
TL1	6.3	6600	8800	10, 11	10, 11	25	17	-	71	18	3	0.2	1° 30′	0.82	0.0005
				12	12, 14	32	20	-							
TL2	16	5500	7600	12, 14	12、14	32	20	-	00	10	٥			1 00	
11.2				16	16, 18, 19	42	30	42	80	18	3	0.2	1° 30′	1.20	0.0008
TL3	31.5	4700	6300	16, 18, 19	16, 18, 19	42	30	42	٨٢	0.5	١,	۸ ۵	1000	0.00	0 0000
120	01.0	1.00		20	20, 22	52	38	52	95	35	4	0.2	1° 30′	2. 20	0.0023
TL4	63	4200	5700	20, 22, 24	20, 22, 24	52	38	52	106	0.5	,	0.2	1° 00'	9.04	0 0007
			0.00		25, 28	62	44	62	100	35	4	0.4	1° 30′	2.84	0.0037
TL 5	125	3600	4600	25, 28	25, 28	62	44	62	130	45	5	0.3	1° 00'	6.05	0.012
			1000	30, 32	30, 32, 35	82 82	60	82	100	40	U	V. J	1° 30′	0.00	0.014
TL 6	250	3300	3800	30, 35, 38	32, 35, 38	112	60 84	82 112	160	45	5	0.3	1 00	9.57	0.028
TL 7	500	2800	3600	40 42, 45	40, 42 40, 42, 45, 48	112	84	112	190	45	5	0.3	1°00′	14.01	0.055
IL (500	2000	3000	45, 48, 50, 55	40, 42, 40, 40	112	84	112		40	U	0.0	1 00	11, 01	0.000
TL8	710	2400	3000	40, 40, 00, 00	60, 63	142	107	142	224	65	6	0.4	1° 00′	23. 12	0.1340
				50, 55, 56	50, 55, 56	112	84	112					1 00	20,12	0,1010
TL9	1000	2100	2850	60, 63	60, 63, 65, 70, 71	142	107	142	250	65	6	0.4	1° 00′	30.69	0.2130
mr				63, 65, 70, 71, 75		142	107	142	0.1.5	0.0					
TL 1 0	2000	1700	2300	80, 85	80, 85, 90, 95	172	132	172	315	80	8	0.4	1°00′	61.40	0.660
				80, 85, 90, 95	80, 85, 90, 95	172	132	172	100	100					
TL 1 1	4000	1350	1800	100, 110	100, 110	212	167	212	400	100	10	0.5	0°00′	120.70	2.122
TL 1 2	0000	1100	1.50	100, 110, 120, 125	100、110、120、125	212	167	212	475	130					
1111	8000	1100	1450		130	252	202	252	410	190	12	0.5	0° 00′	210.34	5.39
				120、125	120、125	212	167	212			1.1				
TL 13	16000	800	1150	130、140、150	130、140、150	252	202	252	600	180	14	0.6	0°00′	419.36	11.58
				160	160、170	302	242	302							

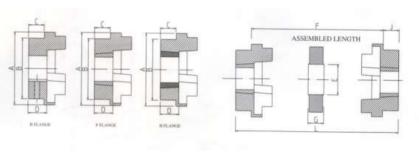

TLL型带制动轮弹性套柱销联轴器(GB/T4323-2002)

结构特点

轴孔键槽的型式和尺寸,标记方法同TL型

标记说明

从动端: Y型轴孔, B型键槽, d₂=70mm,L=172mm 标记方法 TLL6 JB65X107 YB70X172 GB/T4323-2002



TLL 型带制动轮弹性套柱销联轴器基本参数和主要尺寸(GB/T4323-2002)

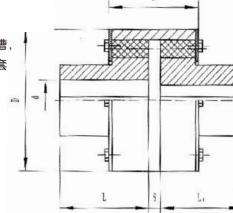
Til	公 称	许用	轴孔直径	轴	孔长度	mm	D _o	D	В	В1	A	许月	用补偿	量	转动	重量
型号	公称扭矩	许用转速	MW JH 10 FF IT	Y型	J	J _{1、Z} 型	יען	ע	П	D1	Λ	径[句	角向	转动 惯量	
	N.m	rpm	d_1 , d_2 , d_2	L	L	Lı				mm				711 173	kg.m ²	kg
/DI I 1			25, 28	62	44	62	200	130	85	42	45	5	0.0	1,00,	0.0416	10 00
TLL 1	125	3800	30、32、35	82	60	82	200	130	90	44	40	- J	0.3	1'30'	0.0416	13.38
TN I O			32, 35, 38	82	60	82	250	100	105	62	45	5	0.0	1,00,	0 1050	01.05
TLL2	250	3000	40、42	112	84	112	200	160	105	02	45	- J	0.3	1 00'	0.1053	21. 25
TLL3	500	2400	40、42、45、48	112	84	112	315	190	132	89	45	5	0.3	1 00	0.2522	35
TLL4	710	2400	45、48、50、55、56	112	84	112	315	224	100	78	65	Į.	Λ.	1,00,	0.0470	45 14
ILL4	/10	2400	60、63	142	107	142	310	44	132	10	00	5	0.4	1 00	0.3470	45.14
TLL 5	1000	2400	50, 55, 56	112	84	112	315	250	100	78	65	6	Δ.4	1,00,	0.4070	F0 C1
ILLD	1000	2400	60、63、65、70	142	107	142	910	200	168	10	00	0	0.4	1 00'	0.4070	58.61
TLL 6	2000	1900	63、65、70、71、75	142	107	142	400	315	168	102	80	8	0.4	1,00,	1 2050	100.0
ILLO	2000	1900	80、85、90、95	172	132	172	400	310	100	104	80	0	U. 4	1'00'	1.3050	100.3
TLL 7	4000	1500	80、85、90、95	172	132	172	500	400	210	127	100	10	0.5	0' 30'	4.330	198.73
ILL (4000	1000	100, 110	212	167	212	300	400	210	141	100	10	0.0	0 30	4.550	198.75
TLL8	8000	1200	100、110、120、125	212	167	212	630	475	265	163	130	12	0.5	0' 00'	12.49	270 C
ILLO	0000	1200	130	252	202	252	090	410	400	100	190	14	0.0	0' 30'	12.49	370.6
			120、125	212	167	212										
TLL9	16000	1000	130、140、150	252	202	252	710	600	298	174	180	14	0.6	0° 30′	30.48	641.13
			160、170	302	242	302										

HRC梅花型联轴器

		带铂	隹套				直	孔										
规	轴	孔	径			孔	径			DIA	DIA	DIA	F	G	l T	ī	ī	T
格	套	最大	最小	С	D	最大	最小	С	D	A	В	Е	Г	U	L ₁	\mathbf{L}_2	\mathbf{L}_3	J
70	1008	25	9	19.0	23.5	32	8	21	25	69	60	31	27.0	18.0	65	66.5	68	29
90	1108	28	9	18.5	23.5	38	8	26	30	85	65	32	32.5	22.5	69.5	76	82.5	29
110	1310	42	14	18.5	26.5	55	8	37	45	112	100	45	45.0	29.0	82	100.5	119	38
130	1610	42	14	17.5	26.5	60	36	47	55	130	105	50	54.0	36.0	89	117.5	146	38
150	2012	50	14	23.0	33.5	65	40	50	60	150	115	62	61.0	40.0	107	133.5	160	42
180	2017	60	16	24.0	46.5	80	46	58	70	180	125	77	74.0	49.0	142	165.5	189	48
230	3020	75	25	39.5	52.5	100	52	77	90	225	155	99	85.5	59.0	164.5	202	239.5	55
280	3525	100	35	51.0	66.5	115	60	90	105	275	206	119	105.5	74.5	207.5	246.5	285.5	67

额定功率(千瓦)

Speed rev/min			С	oupling Siz	e/联轴器规	格		
速度(转/分)	70	90	110	130	150	180	230	280
100	0.33	0.84	1.68	3.3	6.28	9.95	20.9	33
200	0.66	1.68	3.35	6.60	12.6	19.9	41.9	65
400	1.32	3.35	6.70	13.2	25.1	39.8	83.8	132
600	1.98	5.03	10.1	19.8	37.7	59.7	126	198
720	2.37	6.03	12.1	23.8	45.2	71.6	151	238
800	2.64	6.70	13.4	26.4	50.3	79.6	168	264
960	3.17	8.04	16.1	31.7	60.3	95.5	201	317
1200	3.96	10.1	20.1	39.6	75.4	119	251	396
1440	4.75	12.1	24.1	47.5	90.5	143	302	475
1600	5.28	13.4	26.8	52.8	101	159	335	528
1800	5.94	15.1	30.2	59.4	113	179	377	594
2000	6.60	16.8	33.5	66.0	126	199	419	660
2200	7.26	18.4	36.9	72.6	138	219	461	726
2400	7.92	20.1	40.2	79.2	151	239	503	
2600	8.58	21.8	43.6	85.8	163	259	545	
2880	9.50	24.1	48.3	95	181	286		
3000	9.90	25.1	50.3	99	188	298		
3600	11.90	30.1	60.3	118	226			
Nominal Torque(Nm) 颜定扭矩(牛顿米)	31.5	80	160	315	600	950	2000	3150
Max Torque(Nm) 最大扭矩(牛顿米)	72	180	360	720	1500	2350	5000	7200


ZL型弹性柱销齿式联轴器(GB5015-1985)

两个半联轴节凸缘的外缘和外套的内缘制成半径相同的半圆形凹槽, 组合成柱销孔,以嵌入柱销。主动轴半联轴节通过柱销,带动外套 结 外套通过柱销带动从动轴半联轴节转动,以传递扭矩。 外套通过柱销带动从动轴半联轴节转动,以传递扭矩。 工作温度-20~+70℃ 联轴器的轴孔和键槽型式及尺寸,标记方法符合GB/T38 联轴器轴孔和联接型式及尺寸]的规定。 不适于隔声要求从严控制部位

联轴器的轴孔和键槽型式及尺寸,标记方法符合GB/T3852-1997

不适于噪声要求从严控制部位。

可以使用胀紧联结套(锁紧盘)联接。

标记示例

主动端: Y型轴孔, A型键槽, d₁=70mm,L₁=142mm

ZL型弹性柱销齿式联轴器基本参数和主要尺寸(GB5015-1985)

型	公称	许用	轴孔直径mm	轴孔长	长度mm	D	S	В	ť	中用补偿		转动	重量
型号	扭矩	转速	1 1	Y型	J _· 型	D		Д	轴向	径向	角向	惯量 kg.m²	1- ~
	N. m	rpm	d_1, d_2	L	L ₁			mm			(°)	Kg. III	kg
			12, 14	32	_								
ZL1	100	4000	16, 18, 19	42	30	78	2.5	42	±1.5	0.4	0° 30′	0.0004	0.86
			20, 22, 24	52	38								
			16, 18, 19	42									
ZL2	250	4000	20, 22, 24	52	38	90	2.5	50	±1.5	0.3	0° 30′	0.003	3.23
2 2 2	200	1000	25, 28	62	44	30	2.0		_ 1.0	0.0	0 30	0.000	0.20
			30、32	82	60								
			25, 28	62	44						0° 00'		
ZL3	630	4000	30, 32, 35, 38	82	60	118	3	70	±1.5	0.3	0° 30′	0.011	6.57
	_		40、42	112	84								
ZL4	1600	411111	40, 42, 45, 48, 50, 55, 56	112	84	158	4	90	±1.5	0.4	0° 30′	0.038	14.8
D B I	1000		60	142	107	100	^	00		V. 1		0.039	
			50, 55, 56	112	84						0° 00'	0.088	0.4.0
ZL5	4000		60, 63, 70, 71, 75	142	107	192	4	90	±1.5	0.4	0° 30'	0.095	24.8
			80	172	132							0.098	
7.1.6	6300	3300	60, 63, 65, 70, 71, 75	142	107	230	5	112	<u>±</u> 1.5	0.4	0° 30'	0.183	42.5
220	0000		80、85、90、95	172	132						0 00	0.188	
	10000	0000	70、71、75	142	107	0.00	_	110		0 4	0° 00'	0.344	0.0
ZL7	10000	2900	80, 85, 90, 95,	172	132	260	5	112	± 1.5	0.4	0° 30'	0.369	66.3
			100、110	212	167							0.387	
7		~ = ~ ~	80, 85, 90, 95	172	132	000		100		0 0		0.74	105
Z L8	16000	2500	100、110、120、125	212	167	300	6	128	±2.5	0.6	0° 30′	0.789	107
			130	252	202							0.8	

ZL型弹性柱销齿式联轴器基本参数和主要尺寸(GB5015-1985)

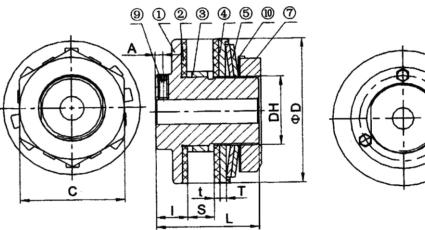
刑	公称	许用	轴孔直径mm	轴孔长	· 度mm	D	C	n n	ř	午用补偿	:量	转动	重量
型号	扭矩	转速	,,,,,,		Ji型	D	S	В	轴向	径向	角向	转动 惯量	
7	N · m	rpm	d_1, d_2	Y型 L	J1空 L1			mm	1ш гл	TT 143	(°)	kg.m²	kg
			90, 95	172	132			T III III			()	1. 237	
ZL9	25000	0000		212	167	335	7	150	<u>±</u> 2. 5	0.6	0° 30'	1.361	140
LLU	25000	2300	130, 140, 150	252	202	333	'	100	2.0	0.0	0 00	1. 427	140
			100, 110, 120, 125	212	167							1. 036	
ZL10	315000	2100	130, 140, 150	252	202	1						2.08	180
LLIU	010000	2100	167, 170	302	242	355	8	152	±2.5	0.6	0° 30′	2.163	100
			110, 120, 125	212	167							2.511	
ZL11	40000	2000	130, 140, 150	252	202	380	8	172	±2.5	0.6	0° 30′	2.721	220
	10000	2000	160, 170, 180	302	242	1						2.818	
			130, 140, 150	252	202							5. 103	
ZL12	63000	1700	160, 170, 180,	302	242	445	8	182	±2.5	0.6	0° 30′	5. 456	370
			190, 200	352	282	1						5. 597	
			150	252	202							10.613	
	100000	1500	160, 170, 180	302	242	515	8	218	±2.5	0.6	0° 30′	11.597	470
Z L 1 3	100000	1500	190, 200, 220	352	282	1						12. 286	470
			240	410	330	1						12.163	
			170, 180	302	242							17.334	
Z L 14	125000	1400	190, 200, 220	352	282	560	8	218	± 2.5	1.0	0° 30′	18.796	708
			240, 250, 260	410	330]						19.477	
			190, 200, 220	352	282							24.64	
ZL15	16000	1300	240, 250, 260	410	330	590	10	240	±2.5	1.0	0° 30′	26.03	768
			280, 300	470	380							26.554	
			220	352	282							43.457	
ZL16	250000	1000	240, 250, 260	410	330	695	10	265	± 2.5	1.0	0° 30′	52. 785	1169
LLIO	20000	1000	280、300、320	470	380	090	10	200	12.0	1.0	0 30	55.761	1103
			340	550	450							55.993	
			240, 250, 260	410	330							85.646	
Z L 1 7	315000	950	280, 300, 320	470	380	770	10	285	±2.5	1.0	0° 30′	91.753	1664
			340、360、380	550	450							96.16	
			250、260	410	330							131.549	
Z L 18	400000	850	280、300、320	470	380	860	13	300	± 5.0	1.0	0° 30′	141.955	2193
LLIO	10000	000	340、360、380	550	450	000	10		_ 0.0	1.0	0 50	151.599	2100
			400, 420	650	540							157.93	
			280、330、320	470	380							244.767	
ZL19	630000	750	340, 360, 380	550	450	970	14	322	±5.0	1.0	0° 30′	266.661	2901
			400, 420, 440, 450	650	540							288.30	
		0.50	320	470	380						- 0 1	484.73	
Z L 20	1000000	650	340、360、380	550	450	1158	15	355	±5.0	1.0	0° 30′	531.50	4251
			400, 420, 440, 450, 460, 480, 500	650	540							580.315	
	1 000000	-00	380	550	450		1.0	0.00			a° a a l	1353.54	
Z L 2 1	1600000	530	400、420、440、450、460、480、500	650	540	1440	18	360	±5.0	1.0	0° 30'	1512.4	7514
			530、560、600、630	800	680							1691.03	
7100	000000	E00	420, 440, 450, 460, 480, 500	650	540		10	405		1 -	0° 00'	2079.06	10140
LL22	2000000	500	530, 560, 600, 630	800	680	1520	19	405	±5.0	1.5	0° 30′	2351.44	10148
			670、710、750	900	780							2394.86	
			480, 500	650	540	-						3130.43	
Z L 2 3	2500000	460	530, 560, 600, 630	800	680	1640	20	438	<u>±</u> 5. 0	1.5	0° 30′	3632.90	13026
			670、710、750	900	780	1040						3815.09	
			800, 850	1000	880	1		1	1			3827.7	

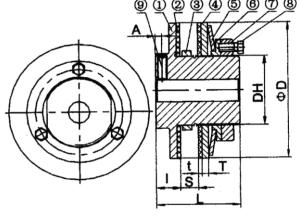
IS型蛇形弹簧联轴器

1,5-- 半联轴节 2--罩壳 3--蛇形弹簧 4--润滑孔

JS型蛇形弹簧联轴器主要尺寸和参数(JB/T8869-2000)

新型号	公称 扭矩	许用 转速	轴孔直径d	轴孔 长度L	L ₂	D	D ₁	С	重量	转动 惯量J	润滑油
JS1	45	4500	18.19.20.22.24.25.28	47	66	95			1.91	0.00141	0.0272
JS2	140	4500	22.24.25.28.30.32.35	47	68	105			2.59	0.00223	0.0408
JS3	224	4500	25.28.30.32.35.38.40.42	50	70	115			3.36	0.00327	0.0544
JS4	400	4500	32.35.38.40.42.45.48.50	60	80	130			5.45	0.00727	0.068
JS5	630	4350	40.42.45.48.50.55.56	63	92	150			7.26	0.0119	0.0862
JS6	900	4125	48.50.55.56.60.63.65	76	95	160		3	10.44	0.0185	0.113
JS7	1800	3600	55.56.60.63.65.70.71.75.80	89	116	190			17.7	0.0451	0.172
JS8	3150	3600	65.70.71.75.80.85.90.95	98	122	210			25.42	0.0787	0.254
JS9	5600	2440	75.80.85.90.95.100.110	120	155	250			42.22	0.178	0.426
JS10	8000	2250	85.90.95.100.110.120	127	162	270		5	54.45	0.27	0.508
JS11	12500	2025	90.95.100.110.120.125.130.140	149	192	310			81.27	0.514	0.735
JS12	18000	1800	110.120.125.130.140.150.160.170	162	195	346			121	0.989	0.908
JS14	35500	1500	140.150.160.170.180.190.200	183	271	450			234.26	3.49	1.952
JS15	50000	1350	160.170.180.190.200.220.240	198	279	500			316.89	5.82	2.815
JS16	63000	1225	180.190.200.220.240.250.260.280	216	304	566			448.1	10.4	3.496
JS17	90000	1100	200.220.240.250.260.280.300	239	322	630	391	6	619.71	18.3	3.76
JS18	125000	1050	240.250.260.280.300.320	260	356	675	431		776.34	26.1	4.4
JS19	160000	900	280.300.320.340.360	280	355	756	487		1058.27	43.5	5.63
JS20	224000	820	300.320.340.360.380	305	432	845	555		1425.56	75.5	10.53
JS21	315000	730	320.340.360.380.400.420	325	490	920	608		1786.49	113	16.07
JS22	400000	680	340.360.380.400.420.440.450	345	546	1000	660	13	2268.64	175	21.06
JS23	500000	630	360.380.400.420.440.450.460.480	368	648	1087	751	13	2950.82	339	33.82
JS24	630000	580	400.420.440.450.460	401	698	1180	822		3836.3	524	50.17
JS25	800000	540	420.440.450.460.480.500	432	762	1260	905		4686.19	711	67.24


注: 1.若选择非GB/T3852轴孔型式,应与本公司技术部门协商; 2, 重量,转动惯量按无孔计算。


奥迪斯扭力限制器防止设备损坏和杜绝停机浪费

奥迪斯扭力限制器是一种很好的过载保护装置,其功能是当突然负载,过载或停机引起扭矩超过预设值时,通过打滑来限制传动系统中的扭矩。当过载消除后,其能够自动回位,不用重新调试设定。奥迪斯扭力限制器可以防止设备损坏和杜绝停机消费。通过利用装在摩擦面上的弹簧来起作用,打滑扭矩可以通过调节螺母或螺栓来调节预设。可以再两个摩擦面间夹紧的中心元件,与链轮、齿轮、皮带轮或法兰盘配合使用。

•奥迪斯扭力限制器的功能与最适宜的弹簧负荷和表面压力相一致结合,保证了较长的打滑时间,维持预定扭矩的回应,提供长时间持续保护。而与一次性补救的安全销系统相比,最大的优点。

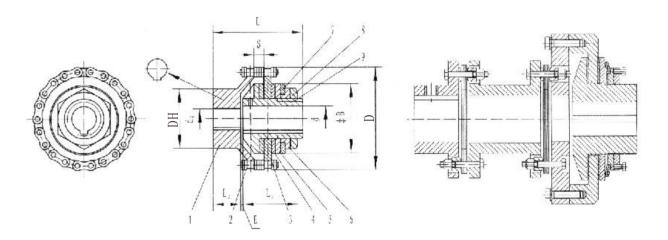
TL200 - TL250 - TL350

TL500 - TL700

- 1、轮毂 2、摩擦板 3、轴衬 4、压力板 5、盘式弹簧 6、垫圈 7、调整螺母 8、调整螺栓 9、固定螺丝 10、止退垫片
- 尺寸 扭矩范围 规格 $(N \cdot m)$ 长度 调整螺栓 固定 重量 调整螺母 TL200-1 2.94~ 9.8 29 30 pl.0 TL200-2 6.86~19.6 6.86 \sim 27.44 TL250-1 M35M5 48 pl.5 TL250-2 13. $72 \sim 53.9$ TL350-1 19.6~74.48 M6 89 62 4.5 49 49 19 6.5 TL350-234.3~148.96 6.5 TL500-1 M65 46.08~209.72 M8 74 65 76 22 74 9.5 pl.5 3PCS 88. 2 ~ 420. 42 TL500-2 115.64~569.38 TL700-1 M95 105 105 178 95 98 pl.5 M10 3PCS 223. 44~ 1087. TL700-2

- 1,依据负载条件或设备本身的力的大小来决定所需打滑扭矩。如果设备负载条件不清楚,请将打滑扭矩设为马达产生在承载限扭装置的轴上扭矩的1.5-2倍。
- 2,选用限扭装置时,应选择有足够大的扭矩范围和孔径范围。3,根据两个摩擦片中间夹的中心元件的厚度来决定选择合适的衬环宽度。
- 1,中间元件的摩擦表面应加工,以保证额定转矩。以及平面度,平行度,与孔一致和防锈,防油污,推荐表面粗糙度Ra1.6,如果中心元件不能满足以上技术要求,打滑扭矩将不稳定。
- 2,请按下表来加工中心元件的孔,各选择最小链轮齿数和轴称宽度.

						链轮	节距利	旧齿数	[
规格	中心元件 孔径(mm)	9.525	5-06B	12.7	-08B	15.87	5-10B	19.08	5-12B	25.4	-16B	31.75	5-20B	38.1	-24B
	.10 JT (mm)	链轮最 小齿数	轴环宽 度(mm)	链轮最 小齿数	轴环宽 度(mm)	链轮最 小齿数	轴环宽 度(mm)	链轮最 小齿数	轴环宽 度(mm)	链轮最 小齿数	轴环宽 度 (mm)	链轮最 小齿数	轴环宽 度 (mm)	链轮最 小齿数	轴环宽 度 (mm)
TL 200	30	20	3.8	16	6	_	_	_	_	_	_	_	_	_	_
TL 250	41	_	_	20	6	17	8	_	_	_	_	_	_	_	_
TL 350	49	_	_	26	6	21	8	18	9.5	15	14.5	_	_	_	_
TL 500	74	_	_	35	6	29	8	25	9.5	19	14.5	_	_	_	_
TL 700	105	_	_		_	39	8	33	9.5	26	14.5	21	17	18	22


- 1. 扭力限制器扭矩的设定是依靠上紧和松开调节螺栓或调节螺母来实现的。 针对TL200-TL350依靠调节螺母,针对TL500-TL700依靠调节螺栓。
- 2, 扭矩的设定可以在将扭力限制器安装在轴上后进行过程是:

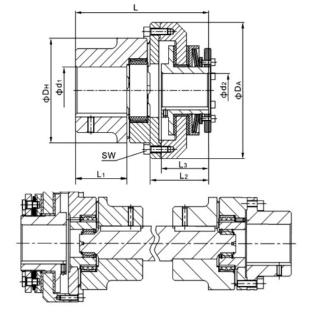
TL200-TL350的规格

- a 用手旋转上紧调节螺母,以至固定蝶型弹簧和压板
- b 试着用扳手将螺母上紧,约60度TL500-TL700的规格a 旋转螺母,固定蝶型弹簧和压板,再上紧每一个调节螺栓,约60度b 如果扭力限制器在正常负载条件下能够打滑。请逐渐上紧螺母(TL200-TL350)或螺栓(TL500-TL700)直到扭力限制器停止打滑请务必保证均匀上紧(或松开)每个螺栓,通过这样的测试,来找到适合设备的扭矩设定。

TL型扭力限制联轴器 (链轮摩擦式安全联轴器)

- 结构特点:
- 结构: 此联轴器是有弹性元件挠性安全联轴器的一种型式,由 双排滚子链联接两半联轴节,调节螺母,使摩擦片与链轮之间 压紧产生一定的摩擦力矩,当过载时,链轮与摩擦片之间可产生 相对滑动,起安全保护作用 扭力范围可按碟形弹簧的压缩量调 整。载荷正常时即恢复正常使用。(参照IB/ZQ4077)
- 结构特点: (1) 具有少量减振,缓冲和补偿性能。
 - (2)对电机和其他零件起保护作用。
 - (3) 工作可靠,使用寿命长,装拆维修方便。
 - (4) 可应用于潮湿, 多尘等恶劣环境。
- 标注示例: 扭力限制联轴器 TL500-1C d₁=30 d₂=55 记为: TL500-1C-30/55

TL型扭力限制联轴器的主要尺寸和参数


型号	扭矩范围			巨及齿数	D	DH	L ₁	L 2	L	S	Ф d1	Ф d ₂	重量
	N·m	(rpm)	节距	齿数							(H7)	(H7)	
TL200-1C	3-10	1200	12.7	16	76	50	29	24	55	7. 5	6-14	8-32	1.0
TL200-2C	6.3-20	1200	12.1	10	10	50	23	21	00	1.0	0 11	0 02	1.0
TL250-1C	6.3-28	1000	12.7	22	102	56	48	25	76	7.4	8-22	13-38	1.9
TL250-2C	14-56	1000	12. (22	102	50	40	20	10	1.4	0 22	10 00	1. 3
TL350-1C	20-80	800	15. 875	24/26	137	72	62	37	103	0. 7	10.25	13-45	4. 2/4. 5
TL350-2C	40-140	800	15.015	24/20	137	14	02	31	103	9. 7	10.25	15-45	4. 2/4. 3
TL500-1C	48-224	500	19.05	28	188	105	76	40	120	11.6	12-42	18-65	10
TL500-2C	90-400	300	13.00	20	100	100	10	40	120	11.0	12 42	10 00	10
TL700-1C	125-560	400	25.4	28	251	150	98	66	168	15.3	15-64	23-90	26
TL700-2C	224-1120	100	20. 1	20	201	100	30	00	100	10.0	15 04	23 90	20
TL10-16C	400-1300	300	44.45	22	355	137	115	71	189	26. 2	20-72	33-95	66
TL10-24C	600-1900	300	11. 10	22	000	101	110	11	103	20.2	20 12	55 55	
TL14-10C	900-2720	200	50.8	26	470	167	150	80	235	30. 1	30-100	38-115	140
TL14-15C	2000-4000	200	50.0	20	470	107	100	00	200	50.1	30 100	30 113	140
TL20-6C	2500-5000	140	50.8	36	631	237	175	120	300	30. 1	40-130	43-150	285
TL20-12C	4700-9500	110	JU. U	00	001	201	110	140	300	JU. 1	10 130	10 100	200

TL型扭力限制器联轴器(星型联轴器摩擦式安全联轴器)

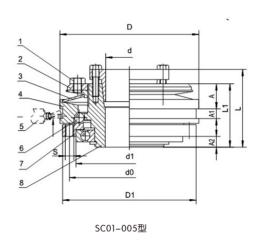
特点

轴与轴连接 扭向弹性力矩限制器 轴向插入,安装方便 能补偿安装偏差 可装在设备上调节打滑力矩 成品孔径公差按照ISO标准为H7,键槽宽公差按照标准为JS9

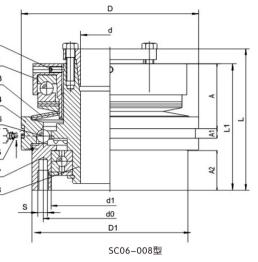
带中间轴联轴器 适合较大的轴间距离 可和钢膜片联轴器组装

订货描述示例

TL350-1C3	Φ20/Φ24	Φ20/Φ24键槽Φ28/Φ40keyway
规格与型号	联轴器孔径/扭力限制器孔径	成品孔径(H7)键槽按GB/T3825-1997(JS9)标准


主要尺寸和参数

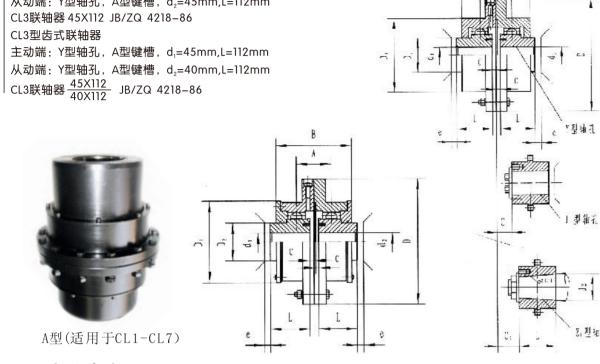
— × / \ ,	1 2 34										
型号	扭矩范围 Nm	最高 转速 rpm	d ₁	d ₂	DA	DH	L	L ₁	L ₂	L ₃	sw
TL200-1C1	2.9~9.8	1000	6 40	8–14	70	40	77	25	36	29	6 114
TL200-2C1	6.9~20	1800	6–19	8-14	70	40	77	25	36	29	6-M4
TL250-1C2	6.9~27	4000	0.04	40.00	7.0		400	20	50	40	
TL250-2C2	14~54	1800	8–24	10-22	87	55	106	30	58	48	6-M5
TL350-1C3	20~74	4000	40.00			0.5	400	0.5		00	
TL350-2C3	34~149	1800	10–28	17–25	118	65	129	35	74	62	6-M6
TL500-1C5	47~210	4000				0.5	400			7.0	
TL500-2C5	88~420	1800	14–42	20–42	158	95	166	50	90	76	8–M8
TL700-1C8	116~569										
TL700-2C8	223~1080	1400	22–65	30-64	216	135	225	75	115	98	8-M10
TL1016-1C10	400~1240										
TL1024-2C10	590~1860	1400	40-90	40-90	300	200	284	100	139	115	8-M12


SC型钢球式扭力限制器

结构特点

过载时,发信环,发出信号 过载消失时能自动复位 工作可靠,使用寿命长,装拆维护方便 扭矩范围可调,多种扭矩范围可提供选择

主要尺寸和参数

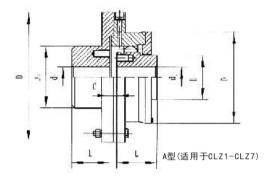

	过载	战限制扭矩	Nm	———— 许用最	过载发生	转动)惯量	锁紧螺栓Φc	及拧紧扭矩	———— 重量
型号	L	M	Н	大转速 rpm	止推位移 mm	大 转毂端 kgm²	法兰端 kgm²	mm	Nm	業里 kg
01	4–10	8-20	12-30	4000	1.2	0.00019	0.00006	4 x M4	3	0.55
02	8-20	15-40	23-60	4000	1.5	0.00047	0.00018	6 x M4	3	0.94
03	15–36	30-72	45–108	3000	1.8	0.00120	0.00039	6 x M5	5	1.63
04	30-75	60–150	90-225	2500	2.0	0.00273	0.00077	6 x M6	9.5	3.03
05	60–150	120-300	180-450	2000	2.2	0.00620	0.00173	8 x M6	9.5	3.03
06	75–150	150-300	300-600	400	2.5	0.03211	0.01548	8 x M8	20	10.3
07	150-300	300-600	600–1200	400	2.8	0.05325	0.03732	8 x M10	40	17
08	300-600	600–1200	1200–2400	300	3.4	0.07178	0.03783	8 x M12	60	21

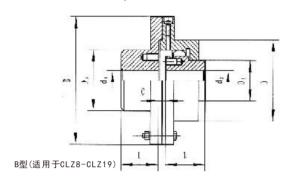
SC型限矩器的安装尺寸(单位·mm)

	マア コロ コン シ	C 7C 7	(+ 14 :	, ,						
型号	d	D	D ₁	D _o	L	L,	А	A ₁	A_2	S
01	9–16	65	60	53	41	33				6 x M4
02	12-20	80	77	69	49	41	14.9	7.5	8	6 x M5
03	15-25	95	90	80	56	47	17	7.5	10	6 x M6
04	22-35	110	106	90	64	52	20	8	10	6 x M6
05	32-45	130	125	112	72	59	23.5	9	10	6 x M8
06	35-55	166	146	125	131	118	60	9	37.5	6 x M10
07	42-65	196	176	155	147.5	130	64	9	42	6 x M12
08	50-75	220	198	170	160	140	66	9	44	6 x M12

CL型齿式联轴器(JB/ZQ4218-86)

CL3型齿式联轴器 主动端:Y型轴孔,A型键槽,d₁=45mm,L=112mm 从动端:Y型轴孔,A型键槽,d₂=45mm,L=112mm



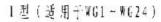

	痴宁	行田	ᇸᇬᇂ	轴孔	. 长 度				_						/ (⊞ =+	
型号	额定 转矩	许用 转速	轴孔直径	Y	J, Z,	Α	В	D	D₁	D ₂	С	C ₁	C ₂	е	惯动 转量	质量
	N. m	rpm	d ₁ d ₂ d _z					m	m		1,				Kg.m ²	Kg
			18,19	42	30						16					
0.4	710		20,22,24	52	38						6	18.5				
CL1	710	3780	25,28	62	44	49	106	170	110	55		14	18.5	12	0.003	7.8
			30,32,35,38	82	60						2.5	11				
			40	112	84											
			30,32,35,38	82	60								22			
CL2	1400	3000	40,42,45	112	84	75	134	185	125	70	2.5	13	28	12	0.05	12.5
			48,50	112	04								20			
			40,42,45	112	84								28			
CL3	3150	2400	48,50,55,56			92	170	220	150	90	2.5	15	36	18	0.13	26.9
			60	142	107								30			
			45,48,50									21	28			
CL4	5600	2000	55,56	112	84							21	20			24.0
CL4	3000	2000	60,63,65,70								2.5			18	0.21	34.9
			71,75	142	107	125	200	250	175	110		17	36			
			50,55,56	112	84											
OL F	0000	1/00	60,63,65,70								_					
CL5	8000	1680	71,75	142	107	145	220	290	200	130	5	30	40	25	0.45	55.8
			80,85,90	172	132											
			60,63,65													
		1500	70,71,75	142	107											
CL6	11200	1500	80,85,90,95	172	132	160	246	320	230	140	5	25	_	25	0.70	79.9
010			100,110	212	167											
			100,110	212	10/											

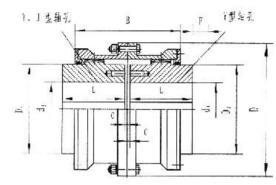
型号	额定 转矩	许用 转速	轴孔直径	轴 孔 Y	长度 J ₁ Z ₁	Α	В	D	D₁	D ₂	С	C ₁	C ₂	е	惯动 转量	质量
至与	N. m	rpm	$d_1 d_2 d_z$		- I			m	m						オマ <u>年</u> Kg. m ²	Kg
			65,70,71,75	142	107							40	40			
CL7	18000	1270	80,85,90,95	172	132	185	286	350	260	170	5	25	45	30	1.15	109.5
			100,110,120	212	167							0.5				
			80,85,90,95	172	132							35				
CL8	22400	1140	100,110,120	212	167	210	325	380	315	190	5	30	45	30	2.38	133.8
			130,140	252	102							30				
			90,95	172	132							40				
CL9	28000	1000	100,110,120,125	212	167	220	335	430	365	210	5	30	_	30	3.55	171
			130,140,150	252	102					2.0					0.00	.,,
			160	302	242											
			110,120,125	212	167											
CL10	50000	85	130,140,150	252	102	245	365	490	420	260	5	30	_	30	7.00	275.8
			160,170,180	302	242											
			120,125	212	167							40				
CL11	71000	750	130,140,150	252	102	280	405	545	470	330	5		_	35	13.75	385
0	, , , , ,	, 00	160,170,180	302	242	200	703	373	4,0	000		35		00	10.73	003
			190,200,220	352	282											
			140,150	252 202 302 242 350 282 350 485					45							
CL12	100000	660	160,170,180	302 242 352 282 350 485	500	520	3/10	5	38	_	35	21.25	540			
02.12			190,200,220	 3 50 485	370	320	040		50		00	21.23	340			
			240,250	410	352 282 350 48 410 330											
			160,170,180	352 282 410 330 302 242 352 282												
CL13	140000	600	190,200,220	302 242 352 282 375 524	400	500	200	7.5	45	_	40	40	798.3			
0210	10000	000	240,250,260	410	330	3/3	324	000	390	360	7.3	43		40	40	790.3
			280	470	380											
			180	410 330												
CL14	200000	540	190,200,220	352	282	105	565	730	650	120	7 5	50	_	25	53.75	976.6
OLIT	200000	340	240,250,260	410	330	403	303	/30	030	420	7.5	30		23	33.73	970.0
			280,300,320	470	380											
			200,220	352	282											
CL15	250000	480	240,250,260	410	330	100	211	700	700	400	7 5	ΕO	_	40	01.05	1100 E
OLIJ	230000	400	280,300,320	470	380	400	044	/00	700	400	7.5	50		40	81.25	1182.5
			340,360	550	450											
			240,250,260	410	330											
CL16	355000	425	280,300,320	470	380	E 2 F	700	000	705	E20	10			E0.	150	1024
CLIO	333000	423	340,360,380	550	450	333	/20	900	785	530	10			50	150	1936
			400	650	540											
			260	410	330											
CL17	560000	380	280,300,320	470	380	405	000	1000	005	400	10	_	_	E ^	005	0700
GL17	300000	300	340,360,380	550	450	025	000	liuuu	885	030	10			50	285	2700
			400,420,440,450	650	540	1										
			300,320	470	380											
CL18	710000	330	340,360,380	550	450	710	000	1100	000	710	10			Γ0	400	0//0
CLIS	710000	330	400,420,440,450			/10	900	1100	990	/10	10			50	400	3669
			460,480,500	650	540											
			360,380	550	450											
01.40	100000	000	400,420,440,450	650	540											
CL19	1000000	300	460,480,500			730	910	1250	1090	800	15	_	_	60	675	5138
			530 560	800	680											

CLZ型齿式联轴器

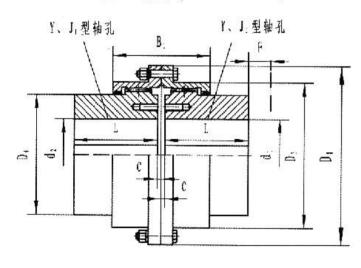
CLZ8型齿式联轴器 主动端: Y型轴孔, A型键槽, d₁=80mm,L=172mm 从动端: Y型轴孔, A型键槽, d₂=80mm,L=172mm CLZ8联轴器80X172 JB/ ZQ 4219-86 CLZ8型齿式联轴器 主动端: Y型轴孔, B型键槽, d₁=80mm,L=172mm 从动端: Y型轴孔, B₁型键槽, d₂=100mm,L=212mm CLZ8联轴器 <u>B80X172</u> B₁100X212 JB/ZQ 4219-86

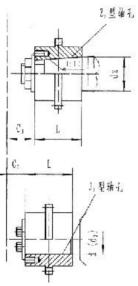
型号	额定 转矩 N. m	许用 转速 rpm	轴 孔 直 径 d ₁ d ₂	轴 孔 长 度 Y L	D	D ₁	D ₂	D ₃	С	惯动 转量 Kg. m²	质量 Kg
	IN . III	1 9111		40	I	mm I			16	118.111	NS .
			18,19	42 52	-						
			20,22,24	62	1				6		
			30,32,35,38	82	1						
CLZ1	710	3780	40,42,45,48	02	170	110	55	95		0.03	7.96
			50,55,56	112					2.5		
			60	142	1						
			30,32,35,38	82							
			40,42,45,48	02	1						
CLZ2	1400	3000	50,55,56	112	185	125	70	110	2.5	0.06	12.3
OLLE	1400		60,63,65,70	142	1						
			40,42,45,48	112							
			50,55,56								
CLZ3	3150	2400	60,63,65	142	220	150	90	145	2.5	0.12	25.4
			70,71,75	172						•	
			80,85,90	172	1						
			45,48,50,55,58	112							
			60,63,65		1						
CLZ4	5600	2000	70,71,75	142	250	175	110	170	2.5	0.22	37.5
			80,85,90,95	172							
			100	212							
			50,55,56	112							
		<u> </u>	60,63,65								
CLZ5	8000	1680	70,71,75	142	290	200	130	190	5	0.44	54.8
			80,85,90,95	172							
			100,110,120	212							
			60,63,65	142							
			70,71,75								
CLZ6	11200	1500	80,85,90,95	172	350	260	170	240	5	0.75	76.4
			100,110,120,125	212							
			130	252							


TIL -	额定	许用	轴 孔 直 径	轴孔长度 Y	Ь	D,	D ₂	D₃	С	惯动	质量
型号	转矩	转速 rpm	$d_1 d_2$	L		· .	2	٠		转量	Kg
	N. m	1 1		140	<u> </u>	mm				Kg.m ²	1,78
			65,70,71,75	142	\dashv						
CLZ7	18000	1270	80,85,90,95	172	350	260	170	240	5	1.25	106
			100,110,120,125	212		= 0 0	., •			1.20	100
			130,140,150	252							
			80,85,90,95	172	_						
CLZ8	23600	1140	100,110,120,125	212	380	290	190	270	5	2.06	138
			130,140,150	252	4					2.00	
			160,170	302							
			90,95	172	_						
			100,110,120,125	212							
CLZ9	28000	1000	130,140,150	252	430	330	210	280	5	2.56	162
			160,170,180	302							
			190	352							
			110,120,125	212							
CLZ10	50000	850	130,140,150	252	400	200	040	200	_	г оо	0.54
OLZ IU	30000	030	160,170,180	302	490	390	260	320	5	5.00	254
			190,200,220	352							
			120,125	212							
			130,140,150	252							
CLZ11	71000	750	160,170,180	302	545	445	300	380	5	9.25	374
CLZII	/1000	/30	190,200,220	352	7						
			240,250	410	_						
			140,150	252							
			160,170,180	302	_						
CLZ12	100000	660	190,200,220	352	590	490	340	420	5	12.50	526.7
CLZ IZ	100000	000	240,250,260	410	- 370	470	340	420		12.50	320.7
		-	280	470	\dashv						
			160,170,180	302							
		-	190,200,220		+						
CLZ13	140000	600	240,250,260	352 410	680	555	380	480	7.5	29.9	794
		-	280,300	470	\dashv						
			180	302							
		-	190,200,220	352	-						
CI 714	اممممما	E 40	240,250,260	410	730	610	420	520	7.5	42.50	965
CLZ 14	200000	540	280,300,320	470	- / 00	010	120	320	7.5	12.50	/03
					\dashv						
			340	550 352							
			200,220		_						
CLZ15	250000	480	240,250,260	410	780	660	480	560	7.5	56.9	1196
			280,300,320		_						
			340,360,380	550							
			240,250,260	410							
CL716	355000	425	280,300,320	470	900	755	530	650	10	120	1855
10		.23	340,360,380	550	_ 700	, 33	330	030	10	120	1033
			400,420	650							
			260	410	_						
A			280,300,320	470	┦_						
CLZ17	560000	380	340,360,380	550	1000	855	630	750	10	225	2690
			400,420,440	650							
			450,460,480								
			300,320	470							
			340,360,380	550							
CLZ18	710000	330	400,420,440	650	1100	950	710	820	10	325	3561
			450,460,480,500								
			530	800							
			360,380	550							
01.740	1000000	200	400,420,440	(50	1050	1050	000	000	,	E/0	4000
G1 / 19	1000000	300	450,460,480,500	650	1250	1050	000	920	15	568	4808
022.0		- 1	430,400,400,300		- 1						


WG型鼓形齿式联轴器(JB/ZQ4186-97)

■ 标记示例:

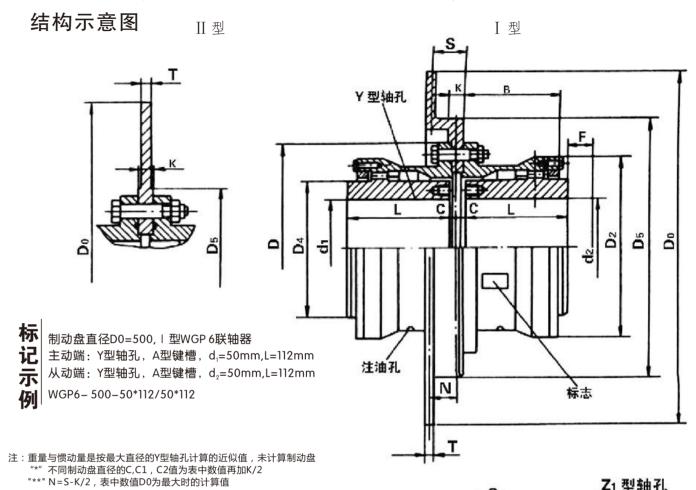

● WG6 I型鼓形齿式联轴器


主轴端: J_1 型轴孔,A型键槽, d_1 =60mm, L=107mm 从动端: Y型轴孔,B型键槽, d_2 =70mm, L=142mm WG6-I 型联轴器 $\frac{J_1A60X107}{YB70X142}$ JB/ZQ4186-97

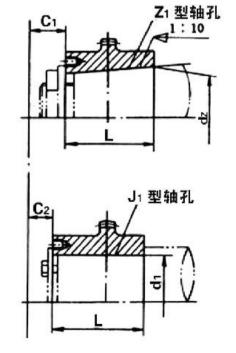
II型(适用于WC1~WC14)

WG型鼓形齿式联轴器的主要尺寸和参数(JB/ZQ4186-97)

型号		许用转速		轴孔	长度	D	D ₁	D ₂	D_3	D_4	В	B ₁	F	()	C 1	C 2	质 k	量 g	转 惯 kg	动 量 . m²
	N.m	rpm	d_1 , d_2 , d_z	Y	J1, Z1									Ι	II			Ι	II	Ι	II
			12、14	32	-									30	-	-	-				
			16、18、19	42	_									20	14	-	-				
WC1	710	7500	20, 22, 24	52	_									10	4	-	-	E C	1 00	0.000	0.0000
WG1	710	1000	25、28	62	44	122	115	98	88	60	116	100	30	3	3	19	18	0.0	4.80	0.008	0.0063
			30, 32, 35, 38	82	60									3	3	23	12				
			40、42	112	84									3	3	29	12				

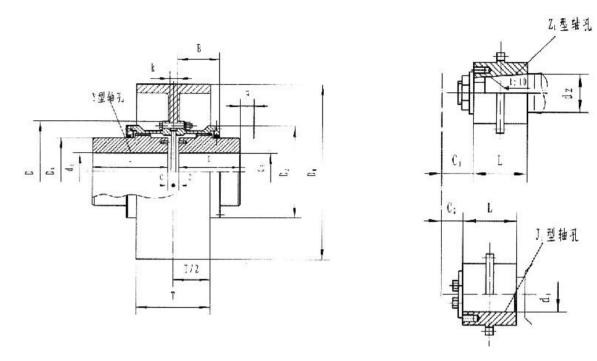

WG型鼓形齿式联轴器的主要尺寸和参数(JB/ZQ4186-97)

型号	公称 转矩	许用 转速	轴孔直径	1	上 上 L	-	r.	Б	2	P.	D	D	Б	С	C	6	l .	量 g	转惯	动量
号	N.m	rpm	d_1 , d_2 , d_z	Y	J ₁ , Z ₁	D	D 1	D 2	D ₃	D 4	В	В	F	I I		C 2	I	II	kg	III
			22, 24	52	_									20 4	_	-	_		-	
			25, 28	62	_	1								10 3	-	-				
WG2	1250	6700	30, 32, 35, 38	82	60	150	145	118	108	77	136	104	30	3 3	23	16	9. 78	7.48	0.021	0.016
			40, 42, 45, 48, 50, 55, 56	112	84	1								3 3	29	16				
			22, 24	52	-									33 7	-	-				
			25, 28	62	-	1								23 3	-	-				
WG3	2500	6300	30, 32, 35, 38	82	60	170	165	140	125	90	160	108	30	3 3	23	16	16.7	12. 2	0.047	0.03
			40, 42, 45, 48, 50, 55, 56	112	84	1								3 3	29	16				
			60, 63	142	107									3 3	36	16				
			30, 32, 35, 38	82	-									13 3	-	-				
WG4	4500	5600	40, 42, 45, 48, 50, 55, 56	112	84	200	195	160	1.45	110	100	116	20	3 3	29	17	25 6	19.6	0 000	0.07
WUT	4500	3000	60, 63, 65, 70, 71, 75	142	107] 200	190	160	145	112	180	116	30	3 3	36	17	20.0	19.0	0.000	0.01
			80	172	132									3 3	41	17				
			30, 32, 35, 38	82	_									23 3		-				
WG5	7100	5300	40, 42, 45, 48, 50, 55, 56	112	84	995	215	180	168	128	200	126	30	3 3	29	19	35	26.1	0 175	0 19
1100	1100	0000	60, 63, 65, 70, 75	142	107	1	210	100	100	140	200	120	30	3 3	36	19	00	20.1	0.110	0.12
			80, 85, 90	172	132									3 3	41	19				
			32, 35, 38	82										35 5	-	-				
			40, 42, 45, 48, 50, 55, 56	112	_									5 5	-	-				
WG6	10000	5000	60, 63, 65, 70, 71, 75	142	107	245	230	200	185	145	224	134	30	5 5	38	20	51.6	38	0.295	0. 21
			80, 85, 90, 95	172	132									5 5	43	20				
			100	212	167									5 5	48	20				
			32, 35, 38	82										45 5		-				
			40, 42, 45, 48, 50, 55, 56	112										15 5		-				
WG7	14000	4500	60, 63, 65, 70, 71, 75	142	107	272	265	230	210	160	244	148	30	5 5	38	20	68.6	45	0.53	0.3
			80, 85, 90, 95	172	132									5 5	43	20				
			100, 110	212	167									5 5	+	20				
			55, 56	112		-								29 5		-				
WG8	20000	4250	60, 63, 65, 70, 71, 75	142	107	290	272	245	225	176	272	162	30	5 5	+	34	79.5	55. 8	0.71	0.46
			80, 85, 90, 95	172	132	-								5 5	_	20				
			100, 110, 120, 125	212	167									5 5	_	20				
			65, 70, 71, 75	142	107	-								5 5	_	38				
WG9	25000	4000	80, 85, 90, 95	172	132	315	305	265	245	190	280	176	30	5 5	_	28	106.5	80.5	1.05	0.7
			100, 110, 120, 125	212	167	-								5 5	_	28				
			130, 140	252	202									5 5	_	28	_			
			75	142	-	-								28 5	-	-				
			80, 85, 90, 95	172	132		l							5 5	_	38		101 0	1 07	١
WG10	40000	3550	100, 110, 120, 125	212	167	355	340	300	280	225	330	196	30	5 5	+	28	158.8	121.8	1.87	1.5
			130, 140, 150	252	202	-								5 5	_	28				
			160	302	242		-							5 5	_	28				\vdash
			85, 90, 95	172	105	-								15 8	-	₩				
WG11	56000	3000	100, 110, 120, 125	212	167	412	385	345	325	256	360	224	40	8 8	+	32	214	167	3.66	2.77
			130, 140, 150	252	202	-								8 8	_	32				
			160, 170, 180	302	242									8 8	66	32				


WG型鼓形齿式联轴器的主要尺寸和参数(JB/ZQ4186-97)

型号	公称 转矩	许用转速	轴孔直径		长度	D	D ₁	D ₂	D ₃	D 4	В	В1	F	(C 1	C 2	质 k	量 g	转惯kg	动量
Þ	N.m	rpm	d_1 , d_2 , d_z	Y	J ₁ , Z ₁	"		D 2	D3	D 4	ь	D 1	1	Ι	II	0 1		I	II	I	II
			120, 125	212	167									8	8	51	45				
WG12	00000	0000	130, 140, 150	252	202	440	405	075		200		0.50		8	8	56	32		0.40		
WG1Z	80000	2800	160, 170, 180	302	242	440	435	375	360	288	414	250	40	8	8	66	32	302	242	6.39	4.78
			190, 200	352	282									8	8	76	32				
			140, 150	252	202									8	8	56	28				
WG13	112000	2500	160, 170	302	202	490	480	425	400	320	470	272	50	8	8	66	32	390	309	10.44	7.76
			190, 200, 220	352	282									8	8	76	32				
			160, 170, 180	252	202									10	10	68	32				
WG14	160000	2300	190, 200, 220	302	242	545	540	462	440	362	530	316	50	10	10	78	32	522	423	17.46	13. 5
			240, 250, 260	352	282									10	10	-	10				
			160, 170, 180	302	242									10	-	68	43				
WG15	224000	2100	190, 200, 220	352	282	580	_	488	_	400	560	_	50	10	-	78	32	677	_	24.91	_
W013	224000	2100	240, 250, 260	410	330	000		100		400	900		30	10	-	-	10	011		27. 71	
			270	470	380									10	-	-	10				
			180	302	242									12	-	70	63				
WG16	280000	1900	190, 200, 220	352	282	650	_	560	_	440	600	_	50	12	-	80	32	939	_	43. 22	_
WOIO	200000	1300	240, 250, 260	410	330	000		300		440	000		30	12	-	-	12	303		10.22	
			280, 300	470	380									12	-	-	12				
			200, 220	352	282									12	-	70	48				
WG17	355000	1800	240, 250, 260	410	330	690	-	600	-	460	650	-	50	12	-	-	12	1041	-	56.27	-
			280, 300, 320	470	380									12	-	-	12				
			220	352	282									12	-	70	73				
WG18	450000	1700	240, 250, 260	410	330	750	_	650	_	E10	700	=	c n	12	-	-	12	1901	_	88. 17	_
WGIO	450000	1700	280, 300, 320	470	380	100		000		510	700		60	12	-	-	12	1381		00.11	
			340, 360	550	450									12	-	-	12				
			240, 250, 260	410	330									12	-	-	12				
WG19	560000	1600	280, 300, 320	470	380	775	-	690	-	535	745	-	60	12	-	-	12	1526	-	108.8	-
			340, 360, 380	550	450									12	-	-	12				
			260	410	330									14	-	-	14				
WG20	710000	1500	280, 300, 320	470	380	825	_	730	_	F00	705	-	co	14	-	-	14	2081	_	164. 4	
WGZU	710000	1000	340, 360, 380	550	450	020		190	_	580	785		60	14	-	-	14	2081		104, 4	
			400	650	540									14	-	-	14				
			280, 300, 320	470	380									14	-	-	14				
WG21	800000	1300	340, 360, 380	550	450	925	-	825	-	620	810	-	60	14	-	-	14	2460	-	242.7	-
			400, 420, 440	650	540									14	-	-	14				
			320	470	380									14	-	-	14				
WG22	900000	950	340, 360, 380	550	450	950	-	850	-	665	820	-	60	14	-	-	14	2775	-	297	-
	<u> </u>		400, 420, 440, 450, 460	650	540	L								14	-	-	14	<u> </u>			
WOOO	1000000	000	360, 380	550	450	1000		000			000		0.0	14	-	-	14	01.0		2010	
WG23	1000000	900	400, 420, 440, 450, 460, 480, 500	650	540	1030	-	900	-	710	880	-	60	14	-	-	14	3148	-	384. 8	-
			380	550	450									16	-	-	16				
WG24	1250000	850	400, 420, 440, 450, 460, 480, 500	650	540	1060	-	925	-	730	900	-	70	16	-	-	16	3766	-	477.8	-
			520	800	680	1								16	-	-	16	1			

WGP型带制动盘鼓形齿式联轴器


制动盘	_	V	S	D	5max	重量	<u>a</u> E Kg	惯动转	量 Kg.m²
D ₀	Т	K	3	I	II	I	II	I	II
315	15	10	42	180	155	8.5	6.7	0.116	0.11
355	15	10	54	200	175	11.4	9.9	0.192	0.178
400	15	14	54	255	230	15.2	12.4	0.32	0.287
450	15	16	54	305	280	19.7	15.6	0.55	0.462
500	15	18	54	325	295	25	20	0.83	0.712
560	15	18	54	350	320	30.7	25.6	1.28	1.127
630	15	20	54	400	360	.8.8	33	2.06	1.826
710	15	20	54	480	450	46.5	39.4	3.32	2.912
800	15	24	70	540	500	67.8	52.7	5.87	4.81
900	15	24	70	600	560	86.6	70.3	9.3	7.852
1000	20	30	80	620	560	128.8	115.1	17.4	15.65

注:联轴器轴孔和联接形式与尺寸应符合GB/T3852的规定,其键盘槽形式有A,B,B $_1$,C及D型,轴孔形式组合 $rac{Y}{Y}$ $rac{Z_1}{J_1}$ $rac{J_1}{Y}$ $rac{J_1}{J_1}$

	1 11 =1	\.														Y J ₁ J ₁		V- V-
型号	公称转矩	许用转速	轴 孔 直 径 d, d, d,	轴子	L 长 度	D ₀	D	D ₂	D ₄	В	F	N**	C*	C ₁ *	C ₂ *	重量 Kg	惯动 转量	润滑脂 总重
	N. m	rpm	12,14	32	-								30	-	-	5	Kg.m ²	Kg.m²
			16,18,19	42	_								20	-	-			
			20,22,24	52	_								10	-	-			
WGP1	710	4000	25,28	62	44	315	122	98	60	58	30	38		30	30	5.62	0.0078	0.11
			30,32,35,38	82	60]							3	20	20			
			40,42	112	84									10	10			
			22,24	52	_								20	_	-			
WGP2	1250	4000	25,28	62	_	315	150	118	77	68	30	38	10	_	_	9.62	0.022	0.12
WGFZ	1230	4000	30,32,35,38	82	60								3	23	16			
			40,42,45,48,50,55,56	112	84									29				
			22,24	52	_								33	_	-			
			25,28	62	-								23	-	-			
WGP3	2500	3550		82	60	355	170	140	90	80	30	49		23	,,	16.6	0.047	0.2
			40,42,45,48,50,55,56	112	84								3	29 36	16			
			60.63	142	107	400							23	-	_			
			30,32,35,38 40,42,45,48,50,55,56	82	84	400							23	29				
WGP4	4500	2500	60.63,65,70,71,75	112 142	107	500	200	160	112	90	30	45	3	36	17	25.3	0.098	0.28
			80	172	132	300							3	41	''			
			30,32,35,38	82	-	400							23	-	_			
			40 42 45 48 50 55 56	112	84	450								29				
WGP5	7100	2500	60.63,65,70,71,75	142	107	500	225	180	128	100	30	45	3	36	19	34.7	0.174	0.45
			80,85,90	172	132									41				
			32,35,38	82	-	450							35	_	_			
			40,42,45,48,50,55,56	112	-	500								_	_			
WGP6	10000	2000	60.63,65,70,71,75	142	107	560	245	200	145	112	30	44	5	38		51.3	0.293	0.65
			80,85,90,95	172	132	630								43	20			
			100	212	167									48				
			32,35,38	82	_	450							45		-			
			40,42,45,48,50,55,56	112	-	500							15	_	-			
WGP7	14000	1700	60.63,65,70,71,75	142	107	560	272	230	160	122	30	44		38		68	0.53	0.8
			80,85,90,95	172	132	630							5	43	20			
			100,110	212	167	710							00	48				
			55,56 60.63,65,70,71,75	112	107	500							29	-	34			
WGP8	20000	1700	80,85,90,95	142 172	107 132	560 630	290	245	176	136	30	44	5	38	34	79	0.71	0.95
			100,110,120,125	212	167	710								43	20			
			65,70,71,75	142	107	560								38	38			
			80,85,90,95	172	132	630								43	00			
WGP9	25000	1600	100,110,120,125	212	167	710	315	265	190	140	30	58	5	48	28	107	1.05	1.3
			130,140	252	202	800								53				
			75	142	_								28	_	_			
			85,90,95	172	132	630								43	38			
WGP10	40000	1600	100,110,120,125	212	167	710	355	300	225	165	30	58	5	48		159	1.74	1.6
			130,140,150	252	202	800								53	28			
			160	302	242									63				
			85,90,95	172	-	710							15	_	-			
WGP11	56000	1400	100,110,120,125	212	167	800	412	345	256	180	40	58		51		215	3.67	2
			130,140,150	252	202	900						-	8	56	32		-	
			160,170,180	302	242									66				
			120,125	212	167	710								51	45			
WGP12	80000	1400	130,140,150	252	202	800	440	375	288	207	40	58	8	56		303	6.4	3.4
			160,170,180 190,200	302	242	900								66	32			
			140,150	352	282	800								76	20			
MCD10	112000	1400	160,170,180	252 302	202	900	400	425	320	235	50	58	8	56	38	391	10.45	4.4
VVGP13	112000	1400	190,200,220	352	282	900	490	425	320	∠ა5	30	36	0	66 76	32	391	10.45	4.4
			170,200,220	JJZ					\vdash					/ 0				
			160.170 180	252	242	900								68				
WGD1/	160000	1200	160,170,180 190,200,220	252 302	242	900	545	375	288	207	50	65	10	68 78	32	523	17.48	6.6

WGZ型带制动轮鼓形齿式联轴器(JB/T7003-93)

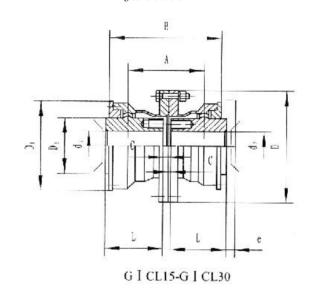
WGZ型带动轮鼓形齿式联轴器的主要尺寸和参数(JB/T7003-93)

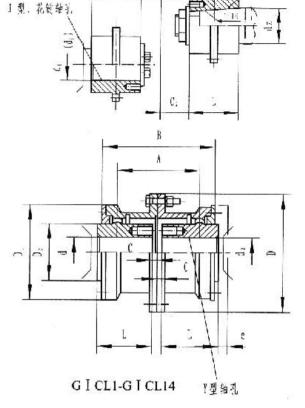
型号	额定 转矩 N. m	许用 转速 rpm	轴孔直径 d1, d2, dz	l	上 L J ₁ , Z ₁	Do	D	D ₂	D 4	В	F	С	C ₁	C 2	质量 kg	转动 惯量 kg.m ²
			12,14	32								30				
			16, 18, 19	42	 _							20		_		
W071		4000	20, 22, 24	52	_	160 200 250	100					10	_	_	5 00	
WGZ1	710	4000	25,28	62	44	250	122	98	60	58	30		19	18	5.62	0.0078
			30, 32, 35, 38	82	60							3	23	12		
			40, 42	112	84								29	12		
			22,24	52	-							20	_	_		
WGZ2	1050	4000	25, 28	62	_	200 250 315	150	110	77	68	20	10	_	_	9.65	0 000
WGZZ	1250	4000	30, 32, 35, 38	82	60	315	100	118	77	00	30	3	23	16	9.00	0.022
			40, 42, 45, 48, 50, 55, 56	112	84							J	29	16		
			22,24	52								33				
			25, 28	62		200						23				
WGZ3	2500	4000	30, 32, 35, 38	82	60	200 250 315	170	140	90	80	30		23	25	16.5	0.047
			40, 42, 45, 48, 50, 55, 56	112	84	010						3	29	16		
			60,63	142	107								36	10		
			30, 32, 35, 38	82		050						13	_			
WGZ4	4500	3000	40, 42, 45, 48, 50, 55, 56	112	84	250 315 400	200	160	112	90	30		29		25, 3	0.098
	1000		60, 63, 65, 70, 71, 75	142	107	400	200	100	112		"	3	36	17	20.0	0.000
			80	172	132								41			
			30, 32, 35, 38	82	_							23	_			
WGZ5	7100	3000	40, 42, 45, 48, 50, 55, 56	112	84	315 400	225	180	128	100	30		29		34.7	0.174
			60, 63, 65, 70, 71, 75	142	107	400		100	120		"	3	36	19	v	
			80, 85, 90	172	132								_			

WGZ型带动轮鼓形齿式联轴器的主要尺寸和参数(JB/T7003-93)

型号	额定 转矩	许用转速	轴孔直径	l	上 L L	D	D	D		ъ	Г		0		质量	转动惯量。
号	N. m	rpm	d_1 , d_2 , d_z	Y	J1, Z1	D ₀	D	D_2	D 4	В	F	С	C 1	C 2	kg	kg.m ²
			32, 35, 38	82	_							35	_	_		
			40, 42, 45, 48, 50, 55, 56	112	-]							_	-	51.0	0.00
WGZ6	10000	3000	60, 63, 65, 70, 71, 75	142	107	315 400	245	200	145	112	30	5	38		51.3	0.29
			80, 85, 90, 95	172	132	100						J	43	20		
			100	212	167								48			
			32, 35, 38	82	_							45				
			40, 42, 45, 48, 50, 55, 56	112	_							15			20	0.50
WGZ7	14000	2500	60, 63, 65, 70, 71, 75	142	107	400 500	272	230	160	122	30	5	38		68	0.53
			80, 85, 90, 95	172	132] 000						J	43	20		
			100, 110	202	167								48			
			55, 56,	112	_							29	_	_		
WGZ8	20000	2500	60, 63, 65, 70, 71, 75	142	107	400 450	290	245	176	136	30		38	34	79	0.71
	20000		80,95,90,95	172	132	400	-**	210	110		**	5	43	20		
			100, 110, 120, 125	212	167							_	48	20		
			65, 70, 71, 75	142	107								38	38		
WGZ9	25000	2000	80, 85, 90, 95	172	132	400 450 630	315	265	190	140	30	5	43		106.5	1.05
	20000		100, 110, 120, 125	212	167	630	***	200	100			ľ	48	28		
			130, 140	252	202								53			
			75	142	100							28	_	_		
			80, 85, 90, 95	172	132	400							43	38	159	1.74
WGZ10	40000	2000	100, 110, 120, 125	212	167	400 500 630	355	300	225	165	30	5	48		100	1.17
			130, 140, 150	252	202	000						ľ	53	28		
			160	302	242								63			
			85, 90, 95	172	<u> </u>	<u></u>						15		_		
WGZ11	56000	1700	100, 110, 120, 125	212	162	500 630 710	412	345	256	180	40		51		215	3.67
	00000		130, 140, 150	252	202	710	***	010	200	***	10	8	56	32		
			160, 170, 180	302	242								_			
			120, 125	212	162								51	45		
WGZ12	80000	1700	130, 140, 150	252	202	500 630 710	440	375	288	207	40	8	56		303	6.4
	0000		160, 170, 180	302	242	710		""	•••		"		66	32		
			190, 200	352	282								76			
W0710	110000	1700	140, 150	252	202	630	100			005		,	56	38	391	10.45
WGZ13	112000	1700	160, 170, 180	302	242	630 710	490	425	320	235	50	8	66	32	001	10.10
			190, 200, 220	352	282								76			
woza 4	100000	1500	160, 170, 180	302	242	710	F 4 F		0.00	0.05		1.0	68	32	523	17.48
WGZ14	160000	1500	190, 200, 220	352	282	710 800	545	462	362	265	50	10	78		020	11.10
			240, 250, 260	410	330									10		

注: 1. 质量与转动惯量是按最大轴孔直径的Y型轴孔长度计算的近似值,未计算制动轮。 2. 锥型轴孔最大直径至 2 2 0 mm。 2. 不同制动轮直径的C、 C_1 、 C_2 值为表中数值再K/2,K值见下表。


制动轮直径Do	T	K	重量kg	转动惯量 kg.m ²	制动轮直径D。	T	K	重量kg	转动惯量 kg.m ²	制动轮直径D。	T	K	重量kg	转动惯量 kg.m ²
160	70	6	2.83	0.014	315	135	12	17.2	0.354	630	265	22	101.3	8.55
200	85	8	5.20	0.043	400	170	14	33.4	1.11	710	300	22	145.8	15.52
250	105	10	10.1	0.128	500	210	18	56.3	3.07	800	340	26	203.0	26.76


G I C L 型 鼓 形 齿 式 联 轴 器 (JB/T8854.3-2001 替代 JB/T8854.2-1999)

■ 标记示例:

● GICL4型鼓形齿式联轴器

主动端: Y型轴孔, A型键槽, d_1 =50mm, L=112mm 从动端: J₁型轴孔, B型键槽, d_2 =45mm, L=84mm GICL4联轴器 $\frac{50X112}{J_1B45X84}$ JB/T8854. 2-2001

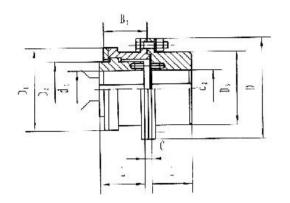
ム型額孔

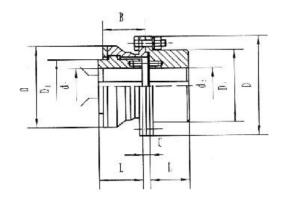
CICL型鼓形齿式联轴器的主要尺寸和参数(JB/T8854.3-2001)

型 号	额定 转矩	许用转速	轴孔直径	轴孔 Y	长度 J ₁ 、Z ₁	D	D ₁	D 2	В	A	С	C_1	C_2	е	转动 惯量	质量
号	1/ M	rpm	d_1, d_2	I											kg. m ²	kg
	KN.m		G1, G2					mm								
			16、18、19	42	-						20	-	-			
GICL1	0.8	7100	20, 22, 24	52	38	125	95	60	115	75	10	-	24	30	0.009	5.9
GICLI	0.0	1100	25、28	62	44	140	70	00	110	10	٥.		18.5	00		51.0
			30, 32, 35, 38	82	60						2.5	15	22			
			25, 28	62	44						10.5	1	29			
GICL2	1.4	6300	30、32、35、38	82	60	144	120	75	135	88	0.5	12.5	30	30	0.02	9.7
			40, 42, 45, 48	112	84						2.5	13.5	28			
			30、32、35、38	82	60							24. 5	25			
GICL3	2.8	5900	40、42、45、48、50、55、56	112	84	174	140	95	155	106	3	17	28	30	0.047	17.2
			60	142	107							17	35			
			32, 35, 38	82	60						14	37	32			·
GICL4	5.0	5400	40、42、45、48、50、55、56	112	84	196	165	115	178	125	3	17	28	30	0.091	24.9
			60、63、65、70	142	107						J	11	35			

GICL型鼓形齿式联轴器的主要尺寸和参数(JB/T8854.3-2001)

型号	额定 转矩	许用转速	轴孔直径	轴孔	长度 J ₁ 、Z ₁	D	D 1	D 2	В	A	С	C 1	C 2	е	转动 惯量	质量
号	KN. m	rpm	d_1, d_2, d_z	I											阪里 kg.m ²	kg
	11111		40 49 45 40 50 55 56	112	84			mm				25	28			
GICL5	8.0	5000	40、42、45、48、50、55、56 60、63、65、70、75	142	107	224	183	130	198	122	3	20	35	30	0.167	38
GIGEG	0.0	0000	80	172	132	221	100	150	130	144	J	22	43			
			48、50、55、56	112	84						6	35	35			
GICL6	11.2	4800	60, 63, 65, 70, 71, 75	142	107	241	200	145	218	160		20	35	30	0.267	48.2
		1000	80, 85, 90	172	132		200	110	210	100	4	22	43			
			60、63、65、70、71、75	142	107							35	35			
GICL7	15.0	4500	80, 85, 90, 95	172	132	260	230	160	244	180	4		43	30	0.453	68.9
			100	212	167	-	200	100		100		22	48			
			65、70、71、75	142	107							35	35			
GICL8	21.2	4000	80, 85, 90, 95	172	132	282	245	175	264	193	5		43	30	0.646	83.3
			100、110	212	167		210	""	201	100		22	48			
			70, 71, 75	142	107						10	45	45			
GICL9	26.5	3500	80, 85, 90, 95	172	132	314	270	200	284	208			43	30	1.036	110
			100, 110, 120, 125	212	167	***	210	200	201	200	5	22	49			
			80、85、90、95	172	132							43	43			
GICL10	42.5	3200	100, 110, 120	212	167	346	300	220	330	249	5	22	49	30	1.88	157
			130、140	252	202					-10		29	54			
			100、110、120、125	212	167								49			
GICL11	60.0	3000	130、140、150	252	202	380	330	260	360	267	6	29	54	40	3.28	217
			160	302	242								64			
			120	212	167							57	57			
GICL12	80.0	2600	130、140、150	252	202	442	380	290	416	313	6		55	40	5.08	305
			160、170、180	302	242							29	68			
			140、150	252	202							54	57			
GICL13	112	2300	160、170、180	302	242	482	420	320	476	364	7		70	40	10.06	416
			190、200	352	282							32	80			
0.7.07.1.4	1.00	2100	160、170、180	302	242							42	70	10	10 774	F0.4
GICL14	160	2100	190、200、220	352	282	520	465	360	532	415	8	32	80	40	16.774	594
CICL 15	0.0.4	1000	190、200、220	352	282	500	-10	400		400	1.0	34	80	40	26. 55	783
GICL15	224	1900	240, 250	410	330	580	510	400	556	429	10	38	-	40	20.00	100
			200、220	352	282							58	80			
GICL16	335	1600	240、250、260	410	330	680	595	465	640	501	10	38	-	50	52.22	1134
			280	470	380							38	-			
			220	352	282							74				
GICL17	400	1500	240、250、260	410	330	720	645	495	672	512	10	39	-	50	69	1305
			280、300	470	380							39				
CICLIO	500	1400	240、250、260	410	330	775	675	E00	700	E0.4	10	46	_	50	96. 16	1626
GICL18	900	1400	280, 300, 320	470	380	775	675	520	702	524	10	41		20	JU. 1U	1040
			260	410	330							67				
GICL19	630	1300	280, 300, 320	470	380	815	715	560	744	560	10	41	-	50	115.6	1773
			340	550	450							41				


GICL型鼓形齿式联轴器的主要尺寸和参数(JB/T8854.3-2001)


型号	额定 转矩 KN.m	许用 转速 rpm	轴孔直径 d1, d2	轴孔 Y L	长度 J ₁ 、Z ₁	D	D ₁	D ₂	В	A	С	C 1	C 2	е	转动 惯量 kg.m ²	质量 kg
	**********		000 200 200	470	380			mm				44				
GICL20	710	1200	280、300、320 340、360	550	450	855	755	858	786	595	13	44	-	50	167.41	2263
GICL21	900	1100	300、320	470	380	915	795	620	808	611	13	59	-	50	215.7	2593
			340、360、380	550	450							44				
GICL22	950	950	340、360、380	550	450	960	840	665	830	632	13	44	_	60	278.07	3036
01022			400	650	540		010	000	000	002		44				
010100	1120	900	360、380	550	450	1010	000	710	870	666	13	44	_	60	397.4	3668
GICL23	1120	300	400、420	650	540	1010	090	/10	010	000	10	48		00	00111	0000
	1050	0.75	380	550	450	1050	0.05	500		205	1 5	46	_	60	448.1	3946
GICL24	1250	875	400, 420, 450	650	540	1050	925	730	890	685	15	50		00	110.1	3340
GICL25	1400	850	400、420、450、480	650	540	1120	970	770	930	724	15	50	-	60	564.64	4443
GICL26	1600	825	420、450、480、500	650	540	1160	990	800	950	733	15	50	-	60	637.4	4791
			450、480、500	650	540							50		7.0	occ oc	F7F0
GICL27	1800	800	530	800	680	1210	1060	850	958	739	15	50	_	70	866. 26	5758
	0000	770	480, 500	650	540	1050	1000	000	1004	005	0.0	55	_	70	1020.76	6232
GICL28	2000	770	530、560	800	680	1250	1080	890	1034	805	20	55	_	70	1040.10	0434
0.1.01.00	2000	705	500	650	540	10/0	1000	000	1004	700	20	57	_	80	1450.84	7549
GICL29	2800	725	530, 560, 600	800	680	1340	1200	960	1034	792	20	55	_	00	1400.04	1943
GICL30	3200	700	560、600、630	800	680	1390	1240	1005	1050	806	20	55	-	80	1947.17	9514

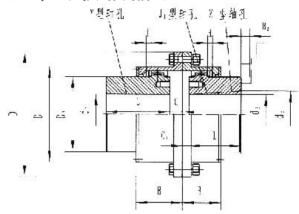
- 注: 1. 联轴器质量和转动惯量是按轴孔最小直径和最大长度计算的近似值。
 - 2. D₂≥465mm, 其密封圈采用圆形断面橡皮条粘结而成。
 - 3. J.型轴孔根据需要,也可以不使用轴端挡圈。
 - 4. 允许角向补偿量 1°3 0′。
 - 5. 允许径向补偿量△Y列于下表。

型号	GICL 1	GICL 2	GICL 3	GICL 4	GICL 5	GICL 6	GICL 7	GICL 8	GICL 9	GICL 10
△Y	1.96	2.36	2.75	3. 27	3.8	4.3	4.7	5.24	5.63	6.81
型号	GICL11	GICL1 2	GICL1 3	GICL1 4	GICL1 5	GICL1 6	GICL1 7	GICL1 8	GICL1 9	GICL20
△Y	7.46	8.77	10.08	11.15	11.36	13.3	13.87	14.53	15.71	16.49
型号	GICL21	GICL2 2	GICL2 3	GICL2 4	GICL2 5	GICL2 6	GICL2 7	GICL2 8	GICL2 9	GICL 30
ΔY	17.02	17. 28	18.06	18.6	19.4	19.9	19.92	21.2	21.1	21.7

GICLZ型鼓形齿式联轴器(JB/T8854.3-2001替代JB/T8854.3-1999)

CICLZ型鼓形齿式联轴器的主要尺寸和参数(JB/T8854.3-2001)

型号	额定 转矩	许用 转速 rpm	轴孔直径 d1, d2	轴孔长度 Y L	D	D ₁	D_2	D_3	В	С	转动 惯量 kg.m ²	质量 kg
	KN. m	трш		mm							Kg. III	N.S.
			16、18、19	42						24		
			20, 22, 24	52						14		
GICLZ1	0.800	7100	25、28	62	125	95	60	80	57		0.0084	5.4
			30, 32, 35, 38	82						6.5		
			40、42、45、48、50	112								
			25、28	62						16		
C I C I 70	1.400	6300	30, 32, 35, 38	82	145	120	75	95	67	0	0.018	9.2
GICLZ2	1.400	0300	40、42、45、48、50、55、56	112	140	120	1.0	90	01	8	0.010	9.2
			60	142								
			30、32、35、38	82								
GICLZ3	2.800	5900	40、42、45、48、50、55、56	112	170	140	95	115	77	7	0.0427	16.4
			60、63、65、70	142								
			32、35、38	82						19		
0.1.01.714	F 000	5400	40、42、45、48、50、55、56	112	105	105	115	100	0.0		0.050	
GICLZ4	5.000	3400	60、63、65、70、71、75	142	195	165	115	130	89	8.5	0.076	22.7
			80	172								
			40、42、45、48、50、55、56	112								
GICLZ5	8.000	5000	60、63、65、70、71、75	142	225	183	130	150	99	9.5	0.0149	36.2
			80、85、90	172								
			48、50、55、56	112						11.5		
0.1.01.7.0	11 000	1000	60, 63, 65, 70, 71, 75	142	0.10	000	1.45	170	100		0.04	
GICLZ6	11.200	4800	80、85、90、95	172	240	200	145	170	109	9.5	0.24	46.2
			100	212								

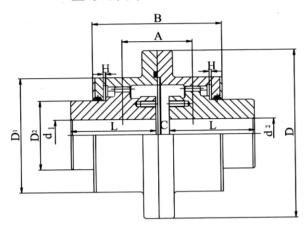

GICLZ型鼓形齿式联轴器的主要尺寸和参数(JB/T8854.3-2001)

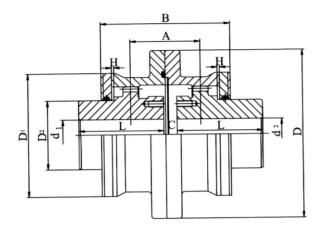
						_						
型号	额定转矩	许用转速	轴孔直径 d1, d2	轴孔长度 Y L	D	D ₁	D ₂	D ₃	В	С	 转动 惯量。	质量
	KN.m	rpm		mm	<u> </u>						kg.m ²	kg
			60、63、65、70、75	142								
GICLZ7	15.0	4500	80, 85, 90, 95	172	260	230	160	195	122	10.5	0.43	68.4
			100、110、120	212								
			65, 70, 71, 75	142								
		4000	80, 85, 90, 95	172				0.1.0			0.04	
GICLZ8	21.2	4000	100、110、120	212	280	245	175	210	132	12	0.61	81.1
			130	252								
			70、71、75	142						18		
0.1.01.70	26 5	2500	80、85、90、95	172	915	070	000	005	1.40	10	0.04	100 1
GICLZ9	26.5	3500	100、110、120、125	212	315	270	200	225	142	13	0.94	100.1
			130, 140	252								
			80、85、90、95	172								
GICLZ10	42.5	3200	100, 110, 120, 125	212	345	300	220	250	165	14	1.67	147. 1
GICLZIU	42.0	3200	130、140、150	252	010	300	220	200	100	14	1.07	147.1
			160	302								
			100、110、120	212								
GICLZ11	60.0	3000	130、140、150	252	380	330	260	285	180	14	2.98	206.3
			160、170、180	302								
			120	212								
GICLZ12	80.0	2600	130、140、150	252	442	380	290	325	208	14	5.31	284.5
OTCLETE	00.0	2000	160、170、180	302	''-	000	200	020	200	11	0.01	201.0
			190, 200	352								
			140、150	252								
GICLZ13	112	2300	160、170、180	302	482	420	320	360	238	15	9.26	402.0
			190、200、220	352								
			160、170、180	302								
GICLZ14	160	2100	190、200、220	352	520	465	360	410	266	16	15.92	582. 2
			240、250	410								
		1000	190、200、220	352				,			0	
GICLZ15	224	1900	240、250、260	410	580	510	400	450	278	17	25. 78	778. 2
			280	470						10 -		
	0.55	1000	200、220	352		-0-	10-	F00	000	16.5		1081
GICLZ16	355	1600	240 , 250 , 260	410	680	595	465	500	320	15.5	16.89	1071.0
			280、300、320	470								

GICLZ型鼓形齿式联轴器的主要尺寸和参数(JB/T8854.3-2001)

						_						
型号	额定 转矩	许用转速	轴孔直径 d ₁ , d ₂	轴孔长度 Y L	D	D ₁	D_2	D_3	В	С	转动 惯量 2	质量
	KN.m	rpm		mm		<u> </u>					kg.m ²	kg
			220	352								
GICLZ17	400	1500	240、250、260	410	720	645	495	530	336	17	60.59	1210.0
			280, 300, 320	470								
			240、250、260	410								
GICLZ18	500	1400	280、300、320	470	775	675	520	540	351	16.5	81.75	1475.0
			340	550								
			260	410								
GICLZ19	630	1300	280、300、320	470	815	715	560	580	372	17	101.57	1603.0
			340、360	550								
CTCL 790	710	1200	280、300、320	470	855	755	585	600	393	90	140.03	2033.0
GICLZ20	710	1200	340、360、380	550	000	100	000	000	999	20	140.00	4000. V
			300、320	470								
GICLZ21	900	1100	340、360、380	550	915	795	620	640	404	20	183.49	2385.0
			400	650								
GICLZ22	950	950	340、360、380	550	960	840	665	680	415	20	235.04	2452.0
0101111	000	000	400、420	650	000	010	000	000	110	40	200.01	2102.0
GICLZ23	1120	900	360、380	550	1010	890	710	720	435	20	323. 16	3332.0
010220			400、420、450	650	1010	000	110	120	100	20	020110	
GICLZ24	1250	875	380	550	1050	925	730	760	445	22	387.97	3639.0
			400、420、450、480	650								
GICLZ25	1400	850	400、420、450、480、500	650	1120	970	770	800	465	22	485.96	4073.0
GICLZ26	1600	825	420、450、480、500	650	1160	990	800	850	475	22	573.64	4527.0
			530	800								
GICLZ27	1800	800	450、480、500	650	1210	1060	850	900	479	22	789.74	5485.0
			530、560	800								
GICLZ28	2000	770	480 500	650	1250	1080	890	960	517	28	960. 26	6050.0
			530、560、600	800								
GICLZ29	2800	725		650 800	1340	1200	960	1010	517	28	1268.98	7090.0
			530、560、600、630 530、560、600、630	800								
GICLZ30	3500	700	670	900	1390	1240	1005	1070	525	28	1822.02	9264.0
			VIV	700								

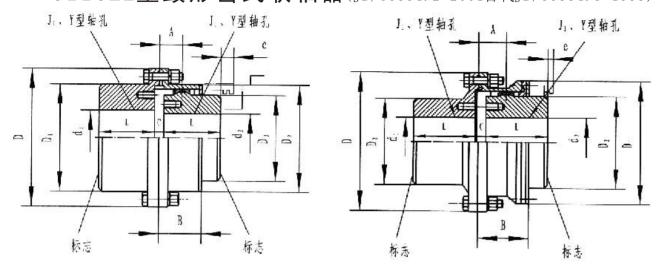
GCLD型鼓形齿式联轴器(JB/T8854.1-2001替代JB/T8854.1-1999)


GCLD型鼓形齿式联轴器的主要尺寸和参数(JB/T8854.1-2001)


型号	新 一 額 定 一 转 矩	许用转速	松和岛的王安 轴孔直径		长度 J ₁ , Z ₁	D	D ₁	D ₂	С	C 1	Н	В	B ₁	B ₂	转动 惯量	质量
号	KN. m	rpm	d_1 , d_2 , d_z	1	J1, L1			n	nm						$kg \cdot m^2$	kg
			22,24	52	38										0.00875	6.2
GCLD1	1 10	4000	25,28	62	44	127	95	75	27	6	0	cc	45	40	0.01025	7.2
GCLDI	1.12	4000	30,32,35,38	82	60	121	90	10	21	0	2	66	45	42	0.011	7.8
			40 、42 、45 、48 、50 、55 、56	112	84										0.01175	9.6
			38	82	60				26.5						0.02125	11.2
GCLD2	1.8	4000	40、42、45、48、50、55、56	112	84	149	116	90	33	6.5	2	70	49	42	0.02425	14
			60, 63, 65	142	107				00						0.0215	16.4
GCLD3	3.15	4000	40 , 42 , 45 , 48 , 50 , 55 , 56	112	84	167	134	105	33	7	2.5	80	54	42	0.04	17. 2
			60, 63, 65, 70, 71, 75	142	107					·			• •		0.0475	22. 4
001.04	_	4000	45 、48 、50 、55 、56	112	84	107	150	105	33.5			01		4.0	0.0725	25. 2
GCLD4	5	4000	60 63 65 70 71 75	142 172	107 132	187	153	125	38	7.5	2.5	81	55	42	0.0825	26. 4
			80, 85, 90						90						0.095	35.6
			50, 55, 56	112 142	84 107				37.5						0.1125 0.1275	31.6
GCLD5	7.1	3750	60, 63, 65, 70, 71, 75	172	132	204	170	140	31.0	7.5	2.5	89	59	42	0.145	44. 6
			80、85、90、95 100、105	212	167				43.5						0.143	53. 9
			55, 56	112	84				10.0						0.1875	40. 5
			60, 63, 65, 70, 71, 75		107										0. 21	49. 8
GCLD6	10	3300	80, 85, 90, 95	172	132	230	186	155	43.5	8.5	3	106	71	47	0.235	56. 3
			100, 110, 115	212	167	1									0. 2675	67.5
			60, 63, 65, 70, 71, 75	142	107										0.3575	63.9
001.07	1.0	2000	80, 85, 90, 95	172	132	050	100	100	40	١	۰	110			0.40	74.7
GCLD7	16	3000	100, 110, 120	212	167	256	186	180	48	9	3	112	73	47	0.4625	88
			130 、135	252	202										0.5275	106.7
			65, 70, 71, 75	142	107										0.560	81.7
GCLD8	22.4	2650	80、85、90、95	172	132	287	239	200	40.5	8.5	3.5	118	82	47	0.6275	95.5
GCLDO	22.4	2000	100、110、120	212	167	201	200	200		0.0	0.0	110	04	41	0.72	114
			130 、 140 、 150	252	202				48						0.8125	123
			70、71、75	142	107										1.0775	112
GCLD9	35.5	2350	80、85、90、95	172	132	325	276	235	49.5	9.5	3.5	132	85	47	1. 2075	130
GCEDU	00.0	2000	100、110、120、125	212	167	020	210	200		0.0	0.0	102	00	11	1. 3825	156
			130 、 140 、 150	252	202										1.56	181
			160 、 170 、 175	302	242				58						1.77	212
			75	142	107 132										1.97	161
			80, 85, 90, 95	172 212	132				c -						2.0725	172
GCLD10	50	2100	100, 110, 120, 125	252	202	362	313	270	65	11	4	149	95	49	2. 38 2. 5625	206 239
			130 , 140 , 150	302	242										2.5625 3.055	280
			160 , 170 , 180	352	282				0.0							319
			190, 200	302	282				68						3. 4225	319

GIICL型鼓形齿式联轴器(JB/T8854.2-2001替代JB/T8854.2-1999)

A型(适用于GIICL1~GIICL13)


GIICL型鼓形齿式联轴器的主要尺寸和参数(JB/T8854.2-2001)

型 转矩 转速 rpm		转动 惯量 kg. m² 0.0035 0.0035 0.00375 0.00375 0.00575	5.1 3 3.1 3.6
GIICL1 0.4 4000 20, 22, 24 52 38 103 71 50 8 2 3 30, 32, 35 82 60		0.0035 0.0035 0.00375	3 3.1
GIICL1 0.4 4000 20, 22, 24 52 38 103 71 50 8 2 3 30, 32, 35 82 60		0.0035 0.00375	3.1
25, 28 30, 32, 35 82 60		0.00375	
30, 32, 35 82 60	88		
	88		
	88		4.9
25 29 62 44	1 88	0.00550	4. 5
GIICL2 0.71 4000 25, 28 02 11 115 83 60 8 2 4	"	0.006	5. 1
40, 42, 45		0.0075	6. 2
22, 24 52 38		0.0105	7.5
		0.0103	7
GIICL3 1 12 4000 25 20 	90	0.010	6.9
00, 02, 00, 00		0.010	8.6
10/12/10/10/00/00		0.0113	
38 82 60			10.1
GIICL4 1.8 4000 40,42,45,48,50,55,56 112 84 149 116 90 8 2	98	0.0223	12.2
60, 63, 65		0.0245	14.5
40, 42, 45, 48, 50, 55, 56 112 84		0.0378	16.4
GIICL5 3. 15 4000 60, 63, 65, 70, 75 142 107 167 134 105 10 2. 5	10	0.0433	19.6
45, 48, 50, 55, 56		0.063	22.1
GIICL6 5.00 4000 60, 63, 65, 70, 71, 75 142 107 187 153 125 10 2.5	111	0.075	26.5
80, 85, 90 172 132		0.0843	31. 2
50, 55, 56	_	0.103	27.6
60, 63, 65, 70, 71, 75, 142, 107, 204, 170, 140, 10, 25, 4		0.115	33.1
GITCL' 7.1 3730 80, 85, 90, 95 172 132 254 170 140 10 3.3	11	0.1298	39.2
100, 105 212 167		0.151	47.5
55, 56 112 84 60 63 65 70 71 75 142 107		0. 167 0. 188	35. 5 42. 3
GIICL8 10.0 3300 60, 63, 65, 70, 71, 75 142 107 230 186 155 12 3 6	14	0. 210	49.7
100, 110, 115 212 167		0.241	60. 2
60, 63, 65, 70, 71, 75 142 107		0.316	55.6
GIICL9 16.0 3000 80.85,90,95 172 132 256 212 180 12 3 6	14	0.356	65.6
100, 110, 120, 125	14	0.413	79.6
130, 135 252 202	_	0.470	95.8
65, 70, 71, 75		0.511	84. 4
GIICL10 22.4 2650 80, 85, 90, 95 172 132 287 239 200 14 3.5 3	14	0.659	101
130, 140, 150 252 202		0.745	119

GIICL型鼓形齿式联轴器的主要尺寸和参数(JB/T8854.2-2001)

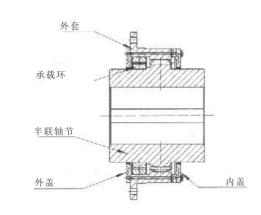
Ttil	额定	许用	轴孔直径	轴孔	 长度L		D.		0			D	转动	质量
型号	转矩	转速	D ₁ , d ₂	Y型	J ₁ 型	D	D 1	D ₂	С	Н	A	В	转动 惯量 ₂	/ 至
75	KN.m	rpm	2.7, 2.2	*		nm							kg.m	kg
			70, 71, 75	142	107								1.454	97
			80, 85, 90, 95	172	132								1.096	114
GIICL11	35.5	2350	100, 110, 120, 125	212	167	325	276	235	14	3.5	81	170	1.235	138
			130, 140, 150	252	242								1.340	161
			160, 170, 175	302	242								1.588	189
			75	142	107								1.623	128
			80, 85, 90, 95	172 212	132 167								1.828	150
GIICL12	50	2100	100, 110, 120, 125	252	242	362	313	270	16	4	89	190	2.113	205
			130, 140, 150	302	242								2. 40	213 248
			160, 170, 180	352	282								3. 055	285
			190, 200	252	202								3. 925	269
GIICL13	71	1850	150 160, 170, 180, 185	302	242	412	350	300	18	4.5	98	208	4. 425	315
OTTOLIO	'1	1000	190, 200, 220, 225	352	282	112	000	300	10	1.0	30	200	4. 918	360
			170, 180, 185	302	242								8. 025	421
GIICL14	112	1650	190, 200, 220	352	282	462	420	335	2.2	5.5	172	296	8.8	476
			240, 250	410	330					""			9. 725	544
			190, 200, 220	352	282								14.30	608
GIICL15	180	1500	240, 250, 260	410	330	512	470	380	22	5.5	182	316	15.85	696
			280, 285	470	380								17.45	786
			220	352	282								14.30	608
GIICL16	250	1300	240, 250, 260	410	330	580	522	430	28	7	209	354	15.85	696
			280, 300, 320	470	380								17.45	786
			250, 260	410	330								43.095	1176
GIICL17		1200	280, 290, 300, 320	470	380	644	582	490	28	7	198	364	47. 525	
			280, 300, 320	550	450								53. 525	
0110110	500	1050	280, 295, 300, 320	470 550	380 450	700	CEO	F 4.0	0.0	8	000	400	78. 525 87. 75	1698 1948
GIICL18	500	1050	340, 360, 380	650	540	726	658	540	28	8	222	430	99.5	2278
			400	470	380								136.75	
GIICL19	710	950	300, 320 340, 350, 360, 380, 390	550	450	818	748	630	32	8	232	440	153. 75	
GIICLIS	/10	330	400, 420, 440, 450, 460, 470	650	540	010	140	030	34	0	404	440	175. 5	3026
			360, 380, 390	550	450								261.75	
GIICL20	1000	800	400, 420, 440, 450, 460, 480, 500	650	540	928	838	720	32	10.5	247	470	299	3984
GIICEZO	1000		530, 540	800	680	1 200	000	120	02	10.0	211	110	360.75	
			400, 420, 440, 450, 460											
GIICL21	1400	750	480, 500	650	540	1022	928	810	40	11.5	255	490	468.75	4977
			530, 560, 600	800	680	1							561.5	6152
			450, 460, 480, 500	650	540								753.75	6318
GIICL22	1800	650	530, 560, 600, 630	800	680	1134	1036	915	40	13	262	510	904.75	7738
			670, 680	900	780								1300.45	7900
GIICL23	2500	600	530, 560, 600, 630	800	680	1282	1178	1030	50	14.5	299	580	1517	10013
U11CL25	2000	000	670, 700, 710, 750, 770	900	780	1202	1170	1000	00	14.0	433	200	1725	11553
			560, 600, 630	800	680								2486	12915
GIICL24	3550	550	670, 700, 710, 750	900	780	1428	1322	1175	50	16.5	317	610	2838. 5	
			800,850	1000	880								3131.75	
			670, 700, 710, 750	900	780								5174. 25	
GIICL25	4500	460	800, 850	1000	880	1644	1538	1390	50	19	325	620	5836.5	
			900, 950	_	980								6413	24765
			1000, 1040	_	1100								7198.25	21191

GIICLZ型鼓形齿式联轴器(JB/T8854.2-2001替代JB/T8854.3-1999)

GIICLZ型鼓形齿式联轴器的主要尺寸和参数(JB/T8854.2-2001)

Section Figure Section Figure Section Sectio	型 号	额定 转矩	许用转速	轴孔直径 d1, d2	轴孔- Y型	长度L J ₁ 型	D	D ₁	D_2	D 3	С	Н	A	В	Е	转动 惯量 ₂	质量
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	号			U 1, U 2	1 空		nm									kg.m²	kg
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				10 10 10	19		11111									0.004	2.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						38											
Color Colo	GIICLZ1	0 4	4000				103	71	71	50	8	2	18	38	38		-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									'	00	ľ		10				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					52	38										0.00675	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																0.00625	4.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	GIICLZ2	0.71	4000	30, 32, 35, 38			115	83	83	60	8	2	21	44	42		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				40, 42, 45, 48, 50, 55, 60													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.1.101.70		4000				107	ا م	0.5				0.0	۱,-			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	G11CLZ3	1.12	4000				127	95	95	75	8	2	22	45	42		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	GIICLZ4	1.8	4000				149	116	116	90	8	2	24.5	49	42		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					_	84											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	GIICLZ5	3.15	4000		142		167	134	134	105	10	2.5	27.5	54	42	0.05175	23.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					172	132										0.0625	28.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				45, 48, 50, 55, 56													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	GIICL76	5 00	4000	60, 63, 65, 70, 71, 75			187	153	152	195	10	9 5	98	55	19		-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	OTTCLZO	0.00	1000	80, 85, 90, 95			101	100	100	140	10	2.0	20	99	144		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	GIICLZ7	7.1	3750				204	170	170	140	10	2.5	30	59	42		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																	
GIICLZ9 16.0 3000 $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	GIICLZ8	10.0	3300				230	186	186	155	12	3	33.5	71	47		
GIICLZ9 16.0 3000 $\begin{array}{ c c c c c c c c c c c c c c c c c c c$																	
GIICLZ9 16.0 3000 80.85.90.95 172 132 167 256 222 212 180 12 3 34.5 37 47 0.415 71.8 0.499 88																	-
G11CLZ9 16.0 3000 00.300 30 00.499 88 100.110.120.125 212 167 256 222 212 180 12 3 34.5 37 47 0.499 88		1.00	0000				050										
	GIICLZ9	16.0	3000				256	222	212	180	12	3	34. 5	37	47		
				130, 135, 140, 150	252	202											

GIICLZ型鼓形齿式联轴器的主要尺寸和参数(JB/T8854. 2-2001)


垂山	额定	许用	轴孔直径	轴孔-	长度L	D	\mathbf{D}_1	D_2	D ₃	С	Н	,	В	Е	转动 惯量 ₂	质量
型 号	转矩	转速	D ₁ , d ₂	Y型	Jī型	ע	D1	D 2	D3	C	11	A	ъ	E	惯量 ₂ kg.m	
7	KN. m	rpm				nm									Kg. III	kg
			65, 70, 71, 75	142	107										0.58	76.1
01101710	00.4	9050	80, 85, 90, 95	172	132	007	000	000	000	1.1	0 -	00	0.0	4.77	0.6725	91.1
GIICLZ10	22.4	2650	100, 110, 120, 125	212	167	287	239	239	200	14	3.5	39	82	47	0.8025	111.5
			130, 140, 150	252	202										0.935	133.5
			110, 120, 125	212	167										1.223	137
GIICLZ11	35.5	2350	130, 140, 150	252	202	325	250	276	235	14	3.5	40.5	85	47	1.41	162.4
			160, 170, 175	302	242										1.625	193
01101710	5.0	1050	130, 140, 150	252	202	000	000	010	050	1.0	,		0.5	10	2.39	212.8
GIICLZ12	50	1850	160, 170, 180	302 352	242 282	362	286	313	270	16	4	44. 5	95	49	2.763	268
			190, 200												3. 093 3. 93	290 272. 3
GIICLZ13	71	1850	150	252 302	202 242	412	322	350	300	18	4 5	49	104	49	4. 535	320
GIICLZIO	11	1000	160, 170, 180, 185 190, 200, 220, 225	352	282	412	044	990	300	10	4.5	49	104	49	6.34	370
			170, 180, 185	302	242										6.9	389
GIICLZ14	112	3300	190, 200, 220	352	282	462	420	335	_	22	5.5	86	148	63	7. 675	438
01102011	112		240, 250	410	330	102	120	000		22	0.0		110	00	8.6	509
			190, 200, 220	352	282										12. 425	566
GIICLZ15	180	1500	240, 250, 260	410	330	512	470	380	-	22	5.5	91	158	63	13.975	650
			280, 285	470	380										15.575	740
			220	352	282										21.2	751
GIICLZ16	250	1300	240, 250, 260	410	330	580	522	430	-	28	7	104.5	177	67	23.125	857
			280, 300, 320	470	380										26.35	974
		1000	250, 260	410	330	244	=00				_				38, 825	1110
GIICLZ17	355	1200	280, 290, 300, 320	470 550	380 450	644	582	490	-	28	7	99	182	67	43. 25	1255
			340, 360, 365												49. 5 69. 5	1465
GIICLZ18	500	1050	280, 295, 300, 320	470 550	380 450	726	658	540	_	28	8	111	915	75	78. 75	1580 1830
GIICLZIO	300	1000	340, 360, 380 400	650	540	120	000	040		40	0	111	215	10	90. 5	2160
			300, 320	470	380										122.5	2115
			340, 350, 360, 380, 390	550	450										139. 5	2457
GIICLZ19	710	950	400, 420, 440, 450, 460			818	748	630	-	32	9	116	220	75		
			470	650	540										161.25	2892
			360, 380, 390	550	450										240	3223
CTTCI 790	1000	800	400, 420, 440, 450, 460	CEO	F40	928	838	700	_	20	10 E	100 5	005	75	277. 25	3793
GIICLZ20	1000	000	480, 500	650	540	940	000	720	-	32	10.5	123.5	235	75		3193
			530, 540	800	680										335	4680
			400, 420, 440, 450, 460	650	540										435	4780
GIICLZ21	1400	750	480, 500			1022	928	810	-	40	11.5	127.5	245	75		
			530, 560, 600	800	680										527.75	5905
CTTCI 700	1000	650	450, 460, 480, 500	650 800	540 680	1104	1006	015		40	10	101	0.55	7.5	701.25	6069
GIICLZ22	1800	000	530, 560, 600, 630	900	780	1134	1036	915	-	40	13	131	255	75	852.25	754
			670, 680	800	680										1415.75	9633
GIICLZ23	2500	600	530, 560, 600, 630	900	780	1280	1178	1030	-	50	14.5	149.5	290	80	1638. 75	
			670, 700, 710, 750, 770 560, 600, 630	800	680										2330. 5	12460
GIICLZ24	3550	550	670, 710, 750	900	780	1428	1322	1175	_	50	16. 5	158.5	305	80	2682. 75	
			800, 850	1000	880			1110			100			~~	2976. 25	
			670, 700, 710, 750	900	780										5174. 25	
CIICI 70F	4500	460	800, 850	1000	880	1611	1590	1900	_	ΕV	10	100 E	910	0.0	5836.5	22381
GIICLZ25	4500	400	900, 950	_	980		1999	1390	-	50	19	162.5	310	80	6413	24761
			1000, 1040		1100										7198.25	27797

DC系列卷筒用鼓形齿式联轴器

结构特点

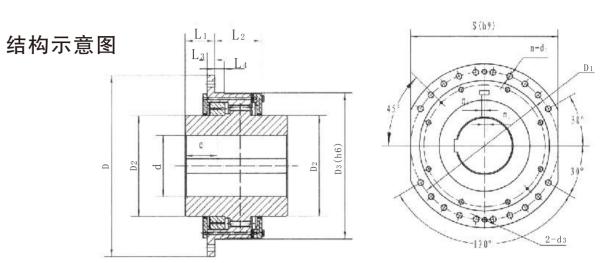
卷筒用鼓型齿式联轴器是一种用于起重机械中起升机构的减速器与卷筒的联接及其他类似机构联接的新型挠性联轴器。此联轴器作为传递转矩及径向载荷之用,但不能用作承受轴向载荷的传动。其工作温度为-25~+80℃,传递公称转矩4~800KN.m;许用径向力为14.5~450KN.

卷筒用鼓型齿式联轴器由带鼓型齿的半联轴节、带联接法兰和内齿圈的外套、带外球面的承载环、内盖、外盖及密封圈等组成,并设有定位磨损指针、润滑油孔和通气孔等。使用时,半联轴节套装于减速机输出轴上,外套与钢丝卷筒用高强度螺栓联接,径向载荷通过承载环的外球面和外套的内承载面形成的接触副构成自动调位的球面轴承来承受.

与其他卷筒用联轴器比较,卷筒用鼓形齿式联轴器有如下特点

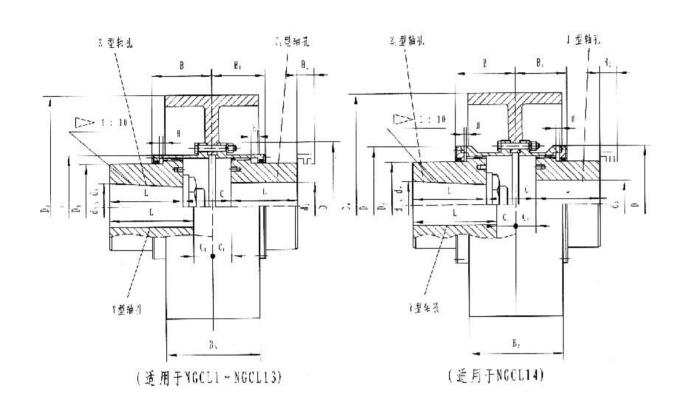
工作稳定可靠, 能承受很大径向载荷和传递较大的转矩, 过载能力大

结构紧凑牢固, 系列化设计, 可简化整机结构, 减轻设备重量


调位性能好,安装、调整方便,维修简单

可配用普通轴伸减速机,减低设备成本

设有定位磨损指示,安全可靠



DC系列卷筒用鼓形齿式联轴器

#U.G	许用 转速	额定 转矩	径向 载矩	轴 直径	孔 长度			9	1 形	尺	ব					į	卷筒联	接尺	ব			磨损 刻度	轴向 间隙	载荷 位置	l .	质量
型号	n	T	F	d(H7)	L	D	D ₃ (h6)	D ₂ (h9)	L,	L ₂	L ₃	L ₄	L ₅	L,	S(h9)	D ₁	n-d ₁	螺栓	а	2-d ₃	r	M ₁		е	Ι	m
	r/min	N.m	N	m	ım							m	m							mm		mm			kg.m²	kg
DC01A DC01B	200	16000	18000	110	185	400	280	180	80	85	15 20	25	26	11	360	360	10–18	M16	30	M16	2.5	0.8	± 2.5	88	1.0	80
DC02A DC02B	200	22400	25000	125	200	420	310	212	80	95	15 20	25	26	11	380	380	10–18	M16	30	M16	2.5	0.8	± 2.5	88	1.5	100
DC03A DC03B	200	31500	35500	150	225	450	340	230	80	105	20	25	34	11	400	400	10-22	M20	30	M20	2.5	1.1	± 2.5	88	2.5	120
DC035A DC035B	200	45000	50000	160	235	500	380	243	95	115	20 25	30	34	15	460	460	10-22	M20	30	M20	2.5	1.4	± 2.5	106	3.0	150
DC04A DC04B	200	63000	71000	200	250	550	420	280	95	130	20 25	30	34	15	500	500	10-22	M20	30	M20	2.5	1.4	± 2.5	106	4.5	190
DC05A DC05B	200	90000	90000	220	265	580	450	315	95	145	20 25	30	34	15	530	530	14-22	M20	20	M20	2.5	1.8	± 2.5	106	7.25	245
DC055A DC055B	200	125000	112000	240	290	620	500	345	101	160	25 30	35	35	19	560	560	14-22	M20	20	M20	2.5	1.8	± 2.5	115	10.3	330
DC06A DC06B	200	160000	140000	260	300	650	530	375	101	170	25 30	35	35	19	580	600	14-22	M20	20	M20	2.5	1.8	± 2.5	115	15.5	385
DC07A DC07B	200	224000	180000	280	310	680	560	400	101	180	25 30	35	35	19	600	630	26-22	M20	10	M20	4	1.8	± 2.5	115	21.4	485
DC08A DC08B	200	315000	224000	300	345	720	600	437	111	185	35	43	35	21	640	660	26-26	M24	10	M24	4	2.2	± 2.5	121	30.6	550
DC09A DC09B	200	450000	280000	340	380	780	670	487	111	200	35	43	35	21	700	730	26-26	M24	10	M24	4	2.2	± 2.5	121	40.2	650
DC010A DC010B	200	560000	355000	380	420	850	730	545	111	215	35	43	35	21	760	800	26–26	M24	10	M24	4	380	± 2.5	121	65.1	890

NGCL型带制动轮鼓形齿式联轴器(JB/ZQ4644-97)

NGCL型带制动轮鼓形齿式联轴器的主要尺寸和参数(JB/ZQ4644-97)

型号	额定转矩	许用转速		轴孔直径	轴孔	长度L	D _o	D	D_1	D_2	С	C_1	Н	В	D	D		质量	转动 惯量
号	N.m	rpm	d_z	d_1 , d_2	Y	$J_1 \setminus Z_1$	Д 0	ע	\mathcal{U}_1	У 2		U ₁	П	D	B ₁	B_2	Вз	kg	以里 kg.m ²
NO OF 1		4000		20, 22, 24	52	38												7	0.07
NGCL1	355	4000		25, 28	62	44	160	103	71	50	30	8	2	56	42	38	68	7.3	0.07
				30, 32, 35	82	60												8	0.071
				25, 28	62	44												9	0.079
NGCL2	630	4000	25~45	30, 32, 35, 38	82	60	160	115	83	60	36	8	2	68	48	42	68	9.7	0.08
				40, 42, 45	112	84												11	0.083
				28	62	44												14.6	0.181
NGCL3	1000	3800	30~55	30, 32, 35, 38	82	60	200	127	95	75	41	8	2	70	49	42	85	15.2	0.184
				40, 42, 45, 48, 50, 55, 56	112	84												17	0.187
				38	82	60												18.6	0.225
NGCL4	1600	3800	40~65	40, 42, 45, 48, 50, 55, 56	112	84	200	149	116	90	41	8	2	74	53	42	85	21.4	0. 237
				60, 63, 65	142	107												23.8	0.246
NCCLE	0000	2000	45~75	40, 42, 45, 48, 50, 55, 56	112	84	050	107	104	105	10	٥	0.5	0.4	F0	10	105	31.8	0.58
NGCL5	2800	3000	40~10	60, 63, 65, 70, 71, 75	142	107	250	167	134	105	48	8	2.5	84	58	42	105	34.4	0.609

NGCL型带制动轮鼓形齿式联轴器的主要尺寸和参数(JB/ZQ4644-97)

型号	额定 转矩	许用 转速	轩	由孔直径	轴孔	上长度	Do	D	D ₁	D ₂	С	C ₁	Н	В	B ₁	B ₂	В3	质量	转动 惯量 ₂
7	N.m	rpm	d _z	d_1 , d_2	Y	J_1, Z_1				lr	l <u> </u>							kg	kg.mº
				45, 48, 50, 55, 56	112	84												37.2	0.714
NGCL6	4500	3000	50~90	60, 63, 65, 70, 75	142	107	250	187	153	125	49	9	2.5	85	59	42	105	38.5	0.754
				80, 85, 90	172	132												47.6	0.795
				50, 55, 56	112	84												48.8	1. 17
NCCL 7	6200	2400	602.100	60, 63, 65, 70, 71, 75	142	107	315	204	170	1.//	E0	٨	0.5	0.0	eo.	10	100	55.2	1. 234
NGCL7	6300	2400	60~100	80, 85, 90, 95	172	132	910	204	170	140	53	9	2.5	93	63	42	132	61.8	1. 299
				100	212	167												71.1	1.388
				55, 56	112	84												80.7	3. 747
NGCL8	9000	1900	70~110	60, 63, 65, 70, 71, 75	142	107	400	230	186	155	64	12	3	112	77	47	168	90	3.841
NUCLO	3000	1300	10.110	80, 85, 90, 95	172	132	100	200	100	100	04	14	U	114	11	41	100	96.5	3.939
				100, 110	212	167												108	4.072
				60, 63, 65, 70, 71, 75	142	107												128	9.427
NGCL9	1400	1500	80~130	80, 85, 90, 95	172	132	500	256	212	180	71	13	3	119	80	47	210	138	9.605
NOCES	1100	1000	00 100	100, 110, 120, 125	212	167	000	200	212	100	11	10	U	110	00	III	210	151	9.847
				130	252	202												167	10, 109
				65, 70, 71, 75	142	107												176	28. 238
NGCL10	20000	1200	80~150	80, 85, 90, 95	172	132	630	287	239	200	65	15	3. 5	120	90	47	265	190	28. 509
				100, 110, 120, 125	212	167			200			"		150		1	•••	209	28.879
				130, 140, 150	252	202												237	29. 248
				70, 71, 75	142	107												257	44. 309
N001 11	0.4.500	1050	100.170	80, 85, 90, 95	172	132	710	005		005								275	44.825
NGCL11	31500	1050	100~170	100, 110, 120, 125	212	167	710	325	276	235	77	16	3. 5	134	94	47	298	300	45.53
				130, 140, 150	252	202												326	46. 235
				167, 170	302	242												357	47.08
				75	142	107												306	47.88
				80, 85, 90, 95	172	132 167												317	48. 29
NGCL12	45000	1050	100~200		212 252	202	710	362	313	270	94	17	4	164	104	49	298	351	49.52
				130, 140, 150	302	242												384	50. 25
				160, 170, 180		282												425	52, 22
				190, 200	352	_												464	53.69
NCCI 19	6900	050	1 5 0 0 0 0 0	150	252 302	202 242	800	412	950	200	00	10	1 [1.05	110	40	995	490	82. 7 84. 7
NGCL13	6300	950	150~220		352	282	000	414	350	300	88	18	4.5	165	113	49	335	544	86. 67
				190, 200, 220														596 670	99.1
NGCL14	100000	950	170~220	170, 180	302 352	242 282	800	462	420	335	92	20	5. 5	209	157	63	335	736	102. 2
NUCL14	100000	300	110.777	2001200120	410	330	000	104	440	000) J/	40	0.0	409	191	0.0	100	785	105. 9
				240,250	110	100												100	100.9

WGT型接中间套鼓形齿式联轴器

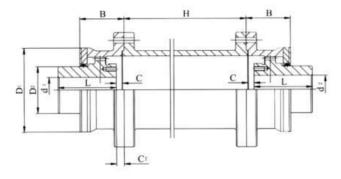
键联接的联轴器的标记方法符合GB/T3852的规定。 主动端:Y型轴孔,A型键槽,d₁=50mm,L=112mm 从动端:Y型轴孔,A型键槽,d₂=50mm,L=112mm 中间套长度H=300mm的 I 型WGT6联轴器

WGT6联轴器 50x112-300 JB/T7004-93

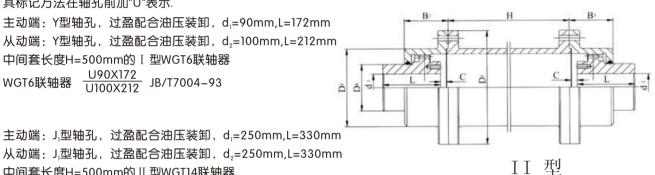
主动端: Y型轴孔, A型键槽, d,=100mm,L=212mm 从动端: Y型轴孔, A型键槽, d₂=130mm,L=202mm 中间套长度H=500mm的 II 型WGT10联轴器

WGT10联轴器联轴器 $\frac{100X112}{J_1B_130x202}$ -II-500 JB/T7004-93

过盈配合油压装卸的无键联接的联轴器按JB/T6136的规定 其标记方法在轴孔前加"U"表示.


主动端: Y型轴孔, 过盈配合油压装卸, d,=90mm,L=172mm 从动端: Y型轴孔, 过盈配合油压装卸, d₂=100mm,L=212mm

中间套长度H=500mm的 I 型WGT6联轴器 WGT6联轴器 <u>U90X172</u> JB/T7004-93


主动端: J₁型轴孔, 过盈配合油压装卸, d₁=250mm,L=330mm

中间套长度H=500mm的 II 型WGT14联轴器

WGT14联轴器联轴器J₁U250X330 -Ⅱ-600 JB/T7004-93

型号	公称 转矩 N. m	轴 孔 直 径	轴孔	长度	D	D ₁	D ₂	D ₃	$D_{\scriptscriptstyle{4}}$	В	B₁	H_{\min}	(2	质量	₫ Kg
- 1	N. m	$d_1 d_2$	Y	J₁ -	_	<u>'</u>			,		ı '		Ι	II	Ι	II
		12,14	32	-									30	30		
		16,18,19	42	-	1								20	14		
I WCT1	1700	20,22,24	52	-	122	115	98	88	60	58	50	75	10	4	5.66	4.86
WGT1	1700	25,28	62	-	122	113	90	00	60	56	30	75			5.00	4.00
		30,32,35,38	82	44]								3	3		
		40,42	112	84												
		22,24	52	_									20	4		
WGT 2	1250	25,28	62	_	150	145	118	108	77	68	52	80	10		9.78	7.48
VVOTZ	1230	30,32,35,38	82	60	130	145	110	100	′ ′	00	52	00	3	3	9.70	7.40
		40,42,45,48,50,55,56	112	84									3			
		22,24	52	_									33	7		
		25,28	62	_									23			
WGT 3	2500	30,32,35,38	82	60	170	165	140	125	90	80	54	80			16.7	12.2
		40,42,45,48,50,55,56	112	84									3	3		
		60,63	142	107												
		30,32,35,38	82	_									13			
WGT 4	4500	40,42,45,48,50,55,56	112	84	200	195	160	145	112	90	58	100			25.6	19.6
WO14	4300	60,63,65,70,71,75	142	107	200	133	100	143	112	30	50	100	3	3	20.0	13.0
		80	172	132												

型号	公称转矩	———————— 轴 孔 直 径		长度	D	D ₁	D ₂	D ₃	D₄	В	B₁	H_{min}	(质量	₫ Kg
,	N. m	$d_1 d_2$	Y	J ₁			_						I	II	Ι	II
		30,32,35,38	82	_									23			
		40,42,45,48,50,55,56	112	84												
WGT 5	7100	60,63,65,70,71,75	142	107	225	215	180	168	128	100	67	100	3	3	35.0	26.1
		80,85,90	172	132												
		32,35,38	82	_									35			
		40,42,45,48,50,55,56	112	_												
WGT 6	10000	60,63,65,70,71,75	142	107	245	230	200	185	145	112	67	100	5	5	51.6	38.0
WOTO	10000	80,85,90,95	172	132												
		100	212	167	1											
		32,35,38	82	-									45			
		40,42,45,48,50,55,56	112	-									15			
WGT 7	14000	60,63,65,70,71,75	142	107	272	265	230	210	160	122	74	120		5	68.6	45.0
WGI7	14000	80,85,90,95	172	132]								5			
		100,110	212	167]											
		55,56	112	-									29			
MCT 0	20000	60,63,65,70,71,75	142	107	200	272	245	225	176	126	0.1	120		_	10.5	EE 0
WGT 8	20000	80,85,90,95	172	132	290	212	245	225	176	130	81	120	5	5	19.5	55.8
		100,110,120,125	212	167												
		65,70,71,75	142	107												
WCTO	25000	80,85,90,95	172	132	215	305	265	245	100	140	88	155	5	5	106.5	80.5
WGT 9	25000	100,110,120,125	212	167	313	303	203	243	190	140	00	133	٦	,	100.5	80.5
		130,140	252	202												
		75	142	-									28			
WOT 10	40000	80,85,90,95	172	132												
WGT 10	40000	100,110,120,125	212	167	355	340	300	280	225	165	98	155	5	5	216.6	169.6
		130,140,150	252	202												
		160	302	242												
		85,90,95	172	_									15			
WGT 11	56000	100,110,120,125	212	167	412	385	345	325	256	180	112	175	8	8	106.5	80.5
**********		130,140,150	252	202			0.0	020						Ĭ		00.0
		160,170,180	302	242												
		120,125	212	167												
WGT 12	80000	130,140,150	252	202	440	435	375	360	288	210	125	205	8	8	305.3	245.3
		160,170,180	302	242										Ĭ	303.3	243.3
		190,200	352	282												
		140,150	252	202												
WGT 13	112000	160,170,180	302	242	490	480	425	400	320	235	136	205	8	8	394.4	313.5
		190,200,220	352	282												
WCT 14	400000	160,170,180	302	242	- 45		400	440	200	005	450	0.40	40	40	500.5	400.5
WGT 14	160000	190,200,220	352	282	545	540	462	440	362	265	158	240	10	10	529.5	430.5
		240,250,260	410	330												
		160,170,180	302	242	-											
WGT 15	224000	190,200,220	352	282	580	-	488	-	400	280	-	240	10	-	684.5	-
		240,250,260	410	330												
		280	470	380												
		180	302	342	-											
WGT 16	280000	190,200,220	352	330	650	-	560	-	440	300	-	240	12	-	948.2	_
	-	240,250,260	410		-											
		280,300	470 352	380												
WCT 17	255000			282	600	_	600	_	460	225	_	200	10	_	1050	_
WGT 17	355000	240,250,260	410	330	690		600		460	325		280	12		1059	
		280,300,320	470	380 282												
		220 240,250,260	352 410	330												
WGT 18	450000	280,300,320	470	380	750	_	650	-	510	350	-	280	12	-	1399	_
			550	450												
		340,360	330	430												